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A Statistical Approach to Account for Heaping Patterns: An Ap-
plication to Self-Reported Income Data

Abstract

Self-reported income information particularly su�ers from misreporting due to the sensitivity of
the issue and the error-proneness of the memory. This leads to an intentional coarsening of the
data, which is called heaping or rounding. If it does not occur completely at random�which is
usually not the case�heaping and rounding has detrimental e�ects on the results of statistical
analysis. For instance, it has an e�ect on empirical statistics (e.g., percentiles) as well as on
inferences from multivariate analyses. Conventional statistical methods do not consider this
kind of reporting bias, and thus might produce invalid inference. In this paper, we describe a
novel statistical modeling approach that allows us to deal with self-reported heaped income data
in an adequate way. We suggest modeling heaping mechanisms and the true underlying model
in combination. This way we are able to simultaneously estimate the parameters of the true
distribution and to determine the heaping pattern present in the data. To describe the true net
income distribution, we use the 3-parametric Dagum distribution. Heaping points are identi�ed
from the data by applying a heuristic procedure comparing a hypothetical income distribution
and the empirical one. To determine heaping behavior, we employ two distinct models: On the
one hand, we assume piecewise constant heaping probabilities, and on the other hand, heaping
probabilities are considered to increase steadily with proximity to a heaping point. We validate
our novel approach by a range of simulation studies. To illustrate the capacity of the novel
approach, we conduct a case study using income data from the adult cohort of the German
National Educational Panel Study.

Keywords

heaping, self-reported income data, piecewise constant heaping probabilities, piecewise bell-
shaped heaping probabilities, Dagum distribution, German National Educational Panel Study

1 Introduction

This paper introduces a novel statistical modeling approach to adequately deal with general
heaping patterns prevalent in self-reported numerical data such as income data. We suggest
modeling heaping mechanisms and the true�but unobserved�distribution of the numerical vari-
able of interest in combination. This way we are able to simultaneously estimate the parameters
of the true distribution and to determine the heaping pattern present in the data.

As a motivating example, we concentrate on individual net income. In various �elds, information
on income is essential for analysis. For instance, it is crucial to determine the relative income
poverty in a country. Likewise, the amount of income is considered as one of the driving forces
behind many decision-making processes such as the decision to have a child. Besides the data
available from pension insurance systems, large-scale surveys are the only source of income in-
formation. One such survey providing accordant data is, for example, the adult cohort sample
of the National Educational Panel Study (NEPS Starting Cohort 6).1 However, especially in-
come information often su�ers from misreporting due to the sensitivity of this issue (Miller &
Paley, 1958; Hanisch, 2005). The heightened sensitivity of the corresponding question stimulus
induces an intentional coarsening of the data. Retrospective data collection and time restrictions
during the interview additionally impair the memory process, and hence, the precision of the

1SC6 version D-3.0.0, see Blossfeld et al. (2011) for a general discussion of the study design and Leopold et
al. (2011) for a general documentation of the Scienti�c Use File.
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responses. Respondents may then rely on heuristics that lead to varying degrees of great di�er-
ences between reported and true values. Misreporting data thus also occurs in a variety of other
applications, for example, when reporting cigarette counts (Wang et al., 2012), age of death, and
weight data (Camarda et al., 2007), ultrasound images in foetal medicine (Wright & Bray, 2003),
unemployment duration (Torelli & Trivellato, 1993), and gestational age (Pickering, 1992).

The phenomenon of coarsening data by rounding true values to even multiples of reported units
is called heaping. In self-reported income data the strong preference, for instance, for multiples
of 100, 500, and 1,000, is striking. Figure 1 illustrates this pattern on the basis of the frequency
distribution of the self-reported individual net income in the NEPS Adult Cohort. Heaping
values has detrimental e�ects on the results of statistical analyses when occurring not at ran-
dom (Heitjan & Rubin, 1991; Gill et al., 1997). For instance, it has an e�ect on distribution
parameters (e.g., mean and variance), empirical statistics (e.g., percentiles), as well as inferences
from multivariate analyses (Wang et al., 2012; Hanisch, 2005). Conventional statistical methods
do not consider this kind of reporting bias, and thus might produce invalid inference. Research
on evidence and quantifying the extent of heaping is abundantly available, and tests are also
provided, see for example, Beaman & Grenier (1998) or Roberts & Brewer (2001).

Though substantial research exists on the statistical modeling of heaping, models are mainly
de�ned for speci�c applications, for example, for dealing with misreported cigarette counts (Wang
et al., 2012). The basic idea of recent modeling approaches is to de�ne a model for the latent exact
values and a set of heaping rules to work on these values. Roughly speaking, the approaches only
di�er in the parametrization of models and in the manner of how the rules are set. Depending on
the area of application, the variable of interest is speci�ed, for example, to be normally distributed
(age of children recorded by month, see Heitjan & Rubin (1991); log-transformed individual
nuchal translucency, see Wright & Bray (2003)), to follow a Poisson distribution (yearly death
counts, see Camarda et al. (2007); number of cigarettes smoked per day, see Wang et al. (2012)),
to have a log-normal distribution (net income per month, see Drechsler & Kiesl (2012)) or to
be piecewise exponentially distributed (unemployment spells, see van der Laan & Kuijvenhoven
(2011)). The set of rules describing the latent heaping mechanism might be de�ned either
explicitly or implicitly. An explicit de�nition of heaping rules means to constitute a detached
deterministic or stochastic model according to which values are heaped. Such processing results in
mixture model approaches, see for example, Heitjan & Rubin (1991); Torelli & Trivellato (1993);
Wright & Bray (2003); van der Laan & Kuijvenhoven (2011); Wang et al. (2012); Bar & Lillard
(2012). Implicit heaping rules can be found in, for example, Pickering (1992) and Camarda et al.
(2007), who both model the heaping mechanism through a composite link function superimposed
onto the latent distribution of the variable of interest. For statistical inference, in the di�erent
�elds of application both Bayesian and frequentist methods have proven their value, see for
example, Heitjan & Rubin (1991) and Camarda et al. (2007). Analysis based on heaped data
can immensely be improved if heaped data are replaced by imputed ones. Once the true latent
distribution of the variable of interest is known, this can easily be conducted. A technique
that has proven to be successful in this context is the method of multiple imputation, see for
example, Heitjan & Rubin (1991); van der Laan & Kuijvenhoven (2011); Drechsler & Kiesl (2012);
Wang et al. (2012). Applying multiple imputation to heaped data means to create several data
sets by replacing heaped values several times with values drawn from the true latent distribution.
The resulting data sets can then be analyzed separately using standard complete-data methods.
A �nal statistical result is obtained by subsequently combining the outcomes of the distinct
analyses applying the combination rules of Rubin (Rubin, 1987).

In order to develop a model that allows us to properly analyze heaped income data, we decided
to adapt the procedure of van der Laan & Kuijvenhoven (2011). For our purposes this procedure
seems to be the most appropriate one as it does not state one speci�c distribution for the variable
of interest. Thus, it can be extended in a straightforward way to cope with our research. We
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Figure 1. Frequency distribution of self-reported individual net income in the NEPS Adult
Cohort, Wave 2009/2010.

designed an approach that permits modeling the heaping mechanism present in the data and
the true underlying model in combination. The true underlying model describes the distribution
function of the income variable, if the data are reported correctly. The heaping mechanism
works on top of this by inducing shifts of true values to heaping points. Formalizing the heaping
mechanism demands a speci�cation of a set of heaping points and a function quantifying the
probabilities to heap. As true underlying model we choose the 3-parametric Dagum distribution.
Bandourian et al. (2002) show that this distribution is particularly well suited to describe the
(net) income distribution in various countries. Heaping points are identi�ed from the data by
applying a heuristic procedure comparing a hypothetical income distribution and the empirical
one. Heaping probabilities are speci�ed using two alternative settings: On the one hand, we
assume piecewise constant heaping probabilities, and on the other hand, heaping probabilities
are considered to increase steadily with proximity to a heaping point. Simulation studies are
used to test the validity of the novel approach. To illustrate its capacity, we apply it to the
individual net income information collected in the adult cohort sample of NEPS. The remainder
of the paper is as follows: In section 2, we present a formal modeling strategy for heaping.
The general method will be described in detail as well as the di�erent procedures for modeling
the heaping mechanism. This section is followed by the description of the model estimation in
section 3. Section 4 presents the simulation studies conducted, and discusses their results. In
section 5 we apply our approach to real data. The paper concludes with remarks and further
possible extensions of the general method.

2 Heaping model

A formal model for describing heaping behavior demands that three issues to be addressed: First,
the model for the true underlying distribution of the variable of interest�in our case, individual
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net income�has to be de�ned. Then, we need to specify the heaping mechanism operating on the
data. This requires that the set of numbers preferred when reporting values, the so-called heaping
points, be identi�ed. On the other hand, the probabilities of heaping have to be determined.

2.1 Latent distribution of true values

In order to specify a formal heaping model, we need to introduce some notation. The vector
z = (z1, . . . , zn) comprises the values reported for the variable of interest. Because we study
net income, it is zi ∈ R+

0 , i = 1, . . . , n. The vector y = (y1, . . . , yn) gives the true values
corresponding to z, yi ∈ R+

0 , i = 1, . . . , n. These values are not directly observed. The set
of heaping points is described by H = {h1, . . . hS}, S ∈ N. For reasons of convenience, we
assume that all heaping points hb lie in the value range of the income variable, b = 1, . . . , S. It
is implausible to state that all heaping points attract all possible (true) income values to the
same extent. Therefore, we de�ne that each heaping point hb has a certain catchment area from
which values can be heaped to hb, that is, a heaping point cannot pull values from outside its
catchment area. We denote these catchment areas by Ib = [sb, tb] where sb and tb describe the
lower and upper bounds of the respective intervals. The function vb(y) describes the probability
to round value y to heaping point hb. We denote the true underlying probability distribution
function of the variable of interest by f(y) and by F (y) the corresponding cumulative distribution
function. In fact, for describing the (true) net income distribution we use the 3-parametric
Dagum distribution, which was found to be ideally suited for this purpose (Kleiber & Kotz,
2003; Bandourian et al., 2002). The accordant density is

f(y | ψ) = b−aqaqyaq−1
[
1 +

(y
b

)a]−q−1
, (1)

where y ∈ R+, ψ comprises the unknown parameters a,b, and q, with a, b, q ∈ R+. As the Dagum
distribution is only de�ned for values greater than zero, without loss of generality, we model zero
income by very small values, for example, by 10−6.

2.2 Identi�cation of heaping points

The set of heaping points can be determined by either de�ning them ex ante or by identifying
them from the data at hand. We rely on the second approach by employing a heuristical proce-
dure capable of catching the heaping points from the given data. The basic idea is to de�ne a
set of hypothetical heaping points, which are then checked for being�according to the data�real
heaping points. For this purpose, we compare the empirical cumulative distribution function
(cdf) F̂ (y) (estimated from z) with the cumulative distribution function of a hypothetical in-
come distribution. This hypothetical income distribution is designed such that its cumulative
distribution function F h(y) roughly resembles the degree of smoothness of the real (unobserved)
cumulative income function F (y). The degree of smoothness of F h(y) can then be used as a
prototypical gauge of the one of the underlying true income distribution F (y). Because smooth-
ness is a prerequisite of the Dagum distribution, F h(y) features the intended shape when being
de�ned as a Dagum distribution, whose parameter vector ψ is estimated using the reported val-
ues z. We parameterize F h(y) accordingly and use it to simulate n hypothetical income values
w = (w1, . . . , wn). On the basis of w, the empirical cumulative distribution function F̂ s(y) is
computed. A hypothetical heaping point h0b is worth being considered a potential heaping point
only if the value of the accordant increment of F̂ (h0b) exceeds the median of all increments of
F̂ s(y). If this is the case, h0b is identi�ed as de facto heaping point if this value also exceeds the
corresponding value of the increment of F̂ s(h0b). We have conducted several simulation studies to
validate the feasibility of our heuristic. In section 4.1 and section 4.2, two settings are detailed.
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Overall, we �nd that it has been performing well. Figure 2 illustrates the processing of the
heuristic using income data simulated as described in section 4.1. It should be noted that the
heuristic presented also allows us to identify heaping points that are not considered as common
ones, such as heaping points not being multiples of 100, 500, and 1,000.
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Figure 2. The upper graph shows the empirical cumulative distribution function (cdf) estimated
from observed net income (given in red) as opposed to the empirical cdf estimated from values
simulated from the respective hypothetical income distribution (given in black). The lower graph
gives the increments of the empirical cdf of the observed income values and the corresponding
increments of the cdf of the hypothesized income values.

2.3 Heaping Probabilities

A further aspect that we have to address when designing a formal heaping model is the quan-
ti�cation of heaping probabilities. To cope with this issue, we de�ne probability functions vb(y)
capturing an interviewee's propensity to round his true income y to heaping point hb. Such func-
tion might depend on various factors. Certainly, individual characteristics of the interviewed
person play a role as well as the conditions of the interview situation. But those aspects are
retained for further research. Likewise, the magnitude of true value of the reported item and its
proximity to hb and to other heaping points might a�ect the propensity to heap. For instance,
someone who earns e476 might be more prone to round up this value to e500 than to e1, 000.
To keep it simple, in this paper, we assume that the propensity to heap depends only on the
true level of income and on its proximity to a heaping point. In line with this, we de�ne two dis-
tinct patterns of heaping behavior: First, we constitute within all catchment areas Ib a uniform
heaping behavior. This results in piecewise constant heaping probabilities of the following form:
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vb(y) =

{
pb, if y ∈ Ib, for y 6= hb

0, otherwise.
(2)

Here, pb denotes the constant heaping probability contributing to heaping point hb, b = 1, . . . , S.
This pattern of heaping behavior especially focuses on the variability of heaping probabilities
due to the magnitude of the regarded values. To account for the fact that people's propensity
to heap is likely to increase with proximity to a heaping point, alternatively, we de�ne heaping
probabilities to steadily increase with the proximity to hb:

vb(y) =

{
ηb exp

{
− 2ξ−2b (y − hb)2

}
, if y ∈ Ib, for y 6= hb

0, otherwise,
(3)

with ηb ∈ [0, 1] and ξb = 0.5(tb − sb), b = 1, . . . , S. Figure 3 illustrates both heaping probability
functions described. Please note that the probability of heaping a value y located on heaping
point hb to precisely that heaping point hb is zero (as there is nothing to heap). The given
de�nitions allow for overlapping catchment areas, that is, values can be heaped to di�erent
heaping points. For example, value 1, 598 might be heaped to 1, 500, 1, 600, or 2, 000.
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Figure 3. Piecewise constant heaping pattern (left graph) and heaping pattern based on proba-
bilities that steadily increase with proximity to hb (right graph).

Both heaping probability functions thus de�ned resemble a multinomial distribution with S + 1
categories, that is, with probability v(y) =

∑S
b=1 vb(y) income value y will be heaped to one

of the S heaping points h1, . . . , hS . Because the probability of heaping y to hb is zero outside
the related catchment area Ib, alternatively, v(y) can be written as v(y) =

∑
b:y∈Ib vb(y). The

probability for y not being heaped is 1− v(y).

Subsequently, the vector φ is de�ned to comprise all parameters necessary to fully determine
vb(y) and v(y). That is, in the case of piecewise constant heaping probabilities φ = (pb)b∈{1,...,S}
and in the case of steadily increasing/decreasing heaping probabilities φ = (ηb)b∈{1,...,S}.
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3 Model estimation

To fully capture the heaping mechanism interfering when income values are reported, we have
to determine the unknown parameter vectors ψ and φ of the true income distribution and of the
heaping model. For this reason, in a �rst step, we construct the likelihood function of observing
zi. For that, we ally the latent income distribution and the heaping model as follows: If the
observed value zi is not heaped, that is, zi = yi, the probability of observing zi is

g1(zi | ψ, φ) =
(
1− v(zi | φ)

)
f(zi | ψ). (4)

Please note that this de�nition also accounts for the fact that values located at heaping points
might be reported correctly. Otherwise, if zi is heaped to a heaping point hb, that is, zi 6= yi,
the corresponding probability is

g2(zi | ψ, φ) = vb(yi)
(
F (tb | ψ)− F (sb | ψ)

)
. (5)

In words, the probability of observing a value zi, which is heaped to hb, is determined by the
di�erence between the cdf at the upper bound and the cdf at the lower bound multiplied by the
probability of heaping its unobserved correspondent yi to hb (yi ∈ Ib \hb). Clearly, in the case of
constant heaping probabilities, vb(yi) is pb. However, in the case of steadily increasing/decreasing
heaping probabilities, vb(yi) cannot be derived so easily. Nevertheless, one way to determine g2
is using the heaping probability vb(E(yi)) of the expected value of yi, for yi ∈ Ib \ hb instead
of vb(yi). If the width of Ib is chosen to be reasonably small, E(yi) ≈ limε→0 hb ± ε, and thus
vb(E(yi)) ≈ ηb. Hence, for the function g2 we yield the following representation

g∗2(zi | ψ, φ) =

{
pb
(
F (tb | ψ)− F (sb | ψ)

)
, for heaping probability function (2),

ηb
(
F (tb | ψ)− F (sb | ψ)

)
, for heaping probability function (3).

Combining the functions g1 and g∗2 yields the likelihood function g of observing zi:

g(zi | ψ, φ) = g1(zi | ψ, φ) + 1(zi ∈ H)g∗2(zi | ψ, φ),

where

1(zi ∈ H) =

{
1, if zi ∈ H,
0, otherwise.

indicates whether zi is on a heaping point or not. In a second step, we de�ne the log-likelihood
function l of observing the income data at hand:

l(θ | z) =
n∑
i=1

ln g(zi | θ) (6)

with θ = (ψ, φ). Maximizing l yields estimates θ̂ = (ψ̂, φ̂) for the parameter vector θ = (ψ, φ):

θ̂ = argmaxθ l(z | θ).

In the optimization process, we have to account for the constraints imposed on the parameter
vectors ψ and φ. That is, we have to ensure that the parameters a, b, and q of the Dagum
distribution (1) are bigger than zero and that the heaping probabilities pb or ηb range between
zero and one. The following constraint system summarizes these requisites:

(i) a > 0, b > 0, and q > 0,

(ii) pb ∈ [0, 1] and ηb ∈ [0, 1], respectively, for all b = 1, . . . , s,

(iii) v(yi) ∈ [0, 1] for all y1, . . . , yn.
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This system can be speci�ed in the form of inequality equations which are linear in the compo-
nents of ψ and φ. More precisely, the constraints (i) corresponding to the parameters of the latent
distribution are linear inequality equations as such. The same applies to the constraints (ii) cor-
responding to the parameters of the heaping probability functions (2) and (3). The constraints
(iii) being due to function g1 (i.e., yi = zi) are made up by sums of terms of the form `component
of φ multiplied by a known factor'. More precisely, for heaping probability function (2) the
constrains (iii) are∑

b:zi∈Ib

pb ∈ [0, 1] for all zi, i = 1, . . . , n.

Hence, they can be described by sums of pb (multiplied by factor 1). The corresponding constraint
system being up to heaping probability function (3) is∑

b:zi∈Ib

ηbCb(zi) ∈ [0, 1] for all zi, i = 1, . . . , n

with Cb(zi) is

Cb(zi) =

{
exp

{
− 2ξ−2b (zi − hb)2

}
, if zi ∈ Ib, for zi 6= hb,

0, otherwise.

Thus, the constraint systems corresponding to the heaping probability functions (2) and (3) have
a linear representation in the components of φ.

The optimization problem at hand is a classical non-linear optimization problem with a linear con-
straint system. Such a problem can be solved, for example, using the �BFGS-B� algorithm (Byrd
et al., 1995) which is a variant of the Broyden-Fletcher-Goldfarb-Shanno algorithm allowing
for box constraints (i.e., to each variable a lower and a upper bound is assigned). Accordant
functionality is provided, for example, by the constrOptim function, which is part of the basic
con�guration of the statistical software R.

A large number of parameters might hamper the success and the e�ciency of the maximization
procedure. For instance, let all multiples of 50 be heaping points in the interval from zero to
5, 000. Then, 101 parameters would have been necessary to estimate to solely determine the
heaping probabilities. A way to counteract this problem is to further restrain the parameter
space, for example, by assuming that some components of φ are equal. In the concrete case this
means to assume, for example, congenial heaping behavior associated with multiples of 100 up to
3, 000 and congenial heaping behavior regarding multiples of 1, 000 equal to or more than 3, 000,
see section 4 for illustration (cf. Table 1 or Table 4).

4 Simulation

To underpin the feasibility of the heuristic suggested to identify heaping points from given data
(cf. section 2.2) and to test the validity of the heaping model proposed, we perform three sim-
ulation studies. In all three studies, we draw N = 10, 000 values from a Dagum distribution
parameterized with a = 3.6, b = 2, 416, and q = 0.43. In the �rst simulation study we assume
uniform heaping patterns, that is, we rely on heaping probability function (2). The second sim-
ulation study builds on steadily increasing/decreasing heaping probabilities, that is, is based on
heaping probability function (3). In the third study, we test whether our method is also capable
of dealing with very high proportions of heaped data. All chosen settings constitute the following
values as heaping points: zero2, multiples of 100 up to 5, 000, multiples of 500 up to 10, 000, and

2For convenience, zero corresponds here de facto to a very small positive value, such as 10−6, because the
Dagum distribution is only de�ned for values greater than zero; see section 2.1.
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multiples of 1, 000 up to 10, 000. In sum, this yields 61 heaping points. The catchment areas of
all heaping points are determined to be symmetrical around the respective heaping point. Here,
zero poses an exception because (in our consideration) negative income values are meaningless.
The widths of the distinct catchment areas depend on the magnitude of the heaping point itself.
We determine catchment areas associated with heaping points, which are multiples of 100 and
not of 500 (Mod100), to have width 100. Likewise, heaping points that are multiples of 500 and
not of 1, 000 (Mod500) as well as heaping points that are multiples of 1, 000 (Mod1000) feature
width 500 and width 1, 000, respectively. To zero a catchment area from zero to 250 is assigned.
As already mentioned in the previous section, a large number of parameters to estimate decreases
the chance to �nd an optimal solution. The setting described so far calls for an estimation of
64 parameters in total: 61 parameters for the heaping probability function (one parameter for
each heaping point) and three parameters for the underlying true distribution. The number
of parameters can be reduced remarkably by assuming similar heaping behavior in each of the
eight intervals [0; 500], (500; 1, 000], (1, 000; 1, 500], (1, 500; 2, 000], (2, 000; 3, 000], (3, 000; 4, 000],
(4, 000; 5, 000], and (5, 000; 10, 000]. That is, in each of these intervals, the probabilities of heap-
ing to a multiple of 100, 500, and 1, 000, respectively, are assumed to be identical. This results
in the following grouping of heaping probabilities:

Set 1: Probability of heaping to zero

Set 2, ..., Set 8: Probabilities of heaping to a multiple of 100 and not of 500 (Mod100) in the
intervals [0; 500], (500; 1, 000], (1, 000; 1, 500], (1, 500; 2, 000], (2, 000; 3, 000], (3, 000; 4, 000],
and (4, 000; 5, 000]

Set 9, ..., Set 14: Probabilities of heaping to a multiple of 500 and not of 1, 000 (Mod500)
in the intervals [0; 500], (1, 000; 1, 500], (2, 000; 3, 000], (3, 000; 4, 000], (4, 000; 5, 000], and
(5, 000; 10, 000]

Set 15, ..., Set 20: Probabilities of heaping to a multiple of 1, 000 (Mod1000) in the intervals
(500; 1, 000], (1, 500; 2, 000], (2, 000; 3, 000], (3, 000; 4, 000], (4, 000; 5, 000], and (5, 000; 10, 000].

These sets are formed by taking the nature of income values reported in the NEPS Adult Cohort,
Wave 2009/2010 (cf. section 5), into consideration. Please note that in some intervals for some
multiples no heaping points exist by de�nition. For example, in the interval (500; 1, 000] no
multiple of 500 exists that is not also a multiple of 1, 000. By classifying the heaping points as
described, the number of parameters to estimate is reduced to 23: Three parameters have to be
estimated to determine the Dagum distribution and 20 to determine the heaping probabilities.

Table 1
Heaping probabilities pb, for b = 1, . . . , S, applied in Simulation 1 �piecewise constant heaping
probabilities�.

Zero Mod100 Mod500 Mod1000

Interval Set Value Set Value Set Value Set Value

[0; 500] Set 1 0.40 Set 2 0.35 Set 9 0.20 � �

(500; 1, 000] � � Set 3 0.40 � � Set 15 0.10
(1, 000; 1, 500] � � Set 4 0.40 Set 10 0.15 � �

(1, 500; 2, 000] � � Set 5 0.35 � � Set 16 0.15
(2, 000; 3, 000] � � Set 6 0.35 Set 11 0.15 Set 17 0.10
(3, 000; 4, 000] � � Set 7 0.25 Set 12 0.25 Set 18 0.20
(4, 000; 5, 000] � � Set 8 0.15 Set 13 0.35 Set 19 0.45

(5, 000; 10, 000] � � � � Set 14 0.40 Set 20 0.50
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Figure 4. Histogram of simulated income distribution according to Simulation 1 �piecewise
constant heaping probabilities�.

4.1 Simulation 1: Piecewise constant heaping probabilities

In order to obtain a data set which roughly resembles the heaped income data as reported in the
NEPS Adult Cohort, Wave 2009/2010 (cf. Figure 1 on page 4), we shift values drawn from the
Dagum distribution according to the heaping probabilities pb, for b = 1, . . . , S, given in Table 1.
The values pb were chosen quite arbitrarily. Figure 4 depicts the simulated income distribution.
In sum, 50.1% of the values are heaped. Table 2 shows how many of the values have been heaped
to zero, to multiples of 100, 500, and 1, 000.

Table 2
Percentages of values heaped in Simulation 1 �piecewise constant heaping probabilities�.

Interval Zero Mod100 Mod500 Mod1000 Total

[0; 500] 1.24 2.59 2.59 0.00 6.42
(500; 1, 000] 0.00 5.12 0.00 3.68 8.80

(1, 000; 1, 500] 0.00 6.56 3.07 0.00 9.63
(1, 500; 2, 000] 0.00 4.62 0.00 4.89 9.51
(2, 000; 3, 000] 0.00 6.22 1.44 1.46 9.12
(3, 000; 4, 000] 0.00 1.74 1.01 1.08 3.83
(4, 000; 5, 000] 0.00 0.36 0.53 1.03 1.92
(5, 000; 10, 000] 0.00 0.00 0.55 1.02 1.57

Total 1.24 27.21 9.19 13.16 50.08

As a �rst step, we apply the heuristical procedure described in section 2.2 to identify heaping
points from the data. For this purpose, we �rst assume a set of hypothetical heaping points,
which we then test for being de facto heaping points. To keep it simple, we construct the
set of hypothetical heaping points such that it comprises all values of the simulated data set.
Applying our heuristic to this set, we �nd it capable of identifying all 61 heaping points set
previously. All detected heaping points are now assigned to one of the sets de�ned above.
Accordant heaping probabilities and the parameters of the underlying Dagum distribution are
estimated via the maximum likelihood approach described in section 3 using heaping probability
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function (2). To solve the actual optimization problem, we use the Broyden-Fletcher-Goldfarb-
Shanno algorithm implemented in the R function constrOptim. We derive initial values for the
parameters of the Dagum distribution by �tting the observed data to a Dagum distribution�
disregarding any heaping. For each of the 20 groups of heaping probabilities considered, we �nd
initial values by computing relative frequencies. These are simply calculated as the quotient
of half the number of values at the respective heaping points and the number of all values in
the accordant catchment areas. On a desktop workstation equipped with Intel(R) Core(TM)
i7, CPU 2.80GHz, 8GB RAM, under Windows 7, using a 64bit system, model �tting takes
approximately 110 min. Table 3 gives the estimates θ̂ of the model parameters θ, their standard
errors, and the respective 95% con�dence intervals. Standard errors and con�dence intervals
are derived by basic bootstrapping. In sum, 100 bootstrap samples are taken. Overall, we

Table 3
Parameter estimates and measures of uncertainty (standard errors and 95% con�dence intervals
CI) corresponding to Simulation 1 �piecewise constant heaping probabilities�.

Parameter True Value Estimated Standard Error CI lower CI upper

Dagum distribution

a 3.60 4.48 0.15 4.23 4.72
b 2, 416.00 2, 919.09 38.47 2, 842.38 2, 994.98
q 0.43 0.29 0.01 0.26 0.31

Heaping probabilities

Set 1 0.40 0.36 0.03 0.30 0.40
Set 2 0.35 0.37 0.02 0.33 0.41
Set 3 0.40 0.40 0.01 0.37 0.42
Set 4 0.40 0.41 0.01 0.39 0.44
Set 5 0.35 0.35 0.01 0.33 0.37
Set 6 0.35 0.35 0.01 0.33 0.37
Set 7 0.25 0.24 0.02 0.22 0.27
Set 8 0.15 0.13 0.03 0.08 0.17
Set 9 0.20 0.21 0.01 0.19 0.23
Set 10 0.15 0.16 0.01 0.15 0.18
Set 11 0.15 0.13 0.01 0.11 0.15
Set 12 0.25 0.24 0.02 0.18 0.27
Set 13 0.35 0.36 0.04 0.32 0.46
Set 14 0.40 0.46 0.04 0.40 0.55
Set 15 0.10 0.10 0.01 0.09 0.11
Set 16 0.15 0.16 0.01 0.14 0.17
Set 17 0.10 0.11 0.01 0.10 0.13
Set 18 0.20 0.22 0.02 0.18 0.25
Set 19 0.45 0.45 0.03 0.38 0.50
Set 20 0.50 0.44 0.03 0.36 0.50

�nd for all parameters reasonable estimates, standard errors, and con�dence intervals. The
estimates of the heaping probabilities are very precise. Only in the interval (5, 000; 10, 000], we
observe notable discrepancies between estimated and true values of heaping probabilities (this
concerns Set 14 and Set 20). The probability of heaping to a multiple of 1, 000 (Set 20) is clearly
underestimated, while the probability of heaping to a multiple of 500 (Set 14) is overestimated,
though not signi�cantly di�erent from the true value. However, this is clearly due to only few
observations being made in the accordant income range. With respect to magnitude, also the
estimates for the parameters a, b, and q of the underlying distribution are close to the true ones.
However, here the estimated values di�er signi�cantly�but not enormously�from the true ones.
To get an idea about the overall discrepancy of the estimated and true Dagum distribution, we
compare their density functions. The left graph of Figure 5 displays the respective curves. In
fact, the shapes of both curves are pretty similar. The estimated curve is just a little bit �atter
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at its mode. Overall, the maximal di�erence between both curves is smaller than 6 · 10−5, which
we deem acceptable.

0 2000 4000 6000 8000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04

Income

D
ag

um
 c

df

true
fitted

0 2000 4000 6000 8000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04

Income
D

ag
um

 c
df

true
fitted

Figure 5. True and estimated density functions of the Dagum distribution. (The dashed lines
mark the prediction intervals.). The black line marks the true density function and the blue
line indicates the estimated one. The left graph shows the outcome of the piecewise constant
model (Simulation 1) and the right graph depicts the outcome of the model assuming steadily
increasing/descreasing heaping probabilities (Simulation 2).

4.2 Simulation 2: Steadily increasing/decreasing heaping probabilities

In the second simulation study we heap our data using heaping probability function (3), that is,
heaping probabilities are assumed to increase with their proximity to heaping points. Table 4
shows the corresponding parameters ηb, for b = 1, . . . , S. The parameters are chosen such that
the shape of the resulting simulated income distribution (cf. Figure 6) resembles more or less
the individual net income distribution as observed in the NEPS Adult Cohort, Wave 2009/2010
(cf. Figure 1 on page 4). Apart from that, the parameters ηb were picked at random. In sum,
48.5% of the values in the simulated data were heaped. Table 5 documents the percentages of
values being heaped according to the nature of the heaping points. Either they are heaped to
zero, to a multiple of 100, of 500, or of 1, 000.

Table 4
Heaping probabilities applied in Simulation 2 �steadily increasing/descreasing heaping probabili-
ties�.

Zero Mod100 Mod500 Mod1000

Interval Set Value Set Value Set Value Set Value

[0; 500] Set 1 0.55 Set 2 0.55 Set 9 0.25 � �

(500; 1, 000] � � Set 3 0.55 � � Set 15 0.20
(1, 000; 1, 500] � � Set 4 0.55 Set 10 0.25 � �

(1, 500; 2, 000] � � Set 5 0.50 � � Set 16 0.25
(2, 000; 3, 000] � � Set 6 0.55 Set 11 0.30 Set 17 0.30
(3, 000; 4, 000] � � Set 7 0.55 Set 12 0.35 Set 18 0.40
(4, 000; 5, 000] � � Set 8 0.50 Set 13 0.40 Set 19 0.50

(5, 000; 10, 000] � � � � Set 14 0.55 Set 20 0.50
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Figure 6. Histogram of simulated income distribution according to Simulation 2 �steadily in-
creasing/descreasing heaping probabilities�.

Table 5
Percentages of values heaped in Simulation 2 �steadily increasing/descreasing heaping probabili-
ties�.

Interval Zero Mod100 Mod500 Mod1000 Total

[0; 500] 0.86 2.20 2.36 0.00 5.42
(500; 1, 000] 0.00 4.02 0.00 4.60 8.62

(1, 000; 1, 500] 0.00 4.90 3.09 0.00 7.99
(1, 500; 2, 000] 0.00 4.22 0.00 4.59 8.81
(2, 000; 3, 000] 0.00 6.09 2.16 2.39 10.64
(3, 000; 4, 000] 0.00 2.15 0.95 1.16 4.26
(4, 000; 5, 000] 0.00 0.95 0.42 0.52 1.89
(5, 000; 10, 000] 0.00 0.00 0.28 0.59 0.87

Total 0.86 24.53 9.26 13.85 48.50

To identify heaping points from the simulated data, we use the heuristical procedure presented
in section 2.2. We determine all simulated data points as being potential heaping points. The
heuristic performs well and delivers the same set of heaping points as in Simulation 1, that
is, it is able to identify all heaping points previously set. After having determined the set of
heaping points, we use the maximum likelihood approach described in section 3 to estimate the
parameters of our heaping model. For this purpose, we again use the Broyden-Fletcher-Goldfarb-
Shanno algorithm. Initial values for the parameters of the Dagum distribution are the result of
�tting the observed data to a Dagum distribution, and initial values for the parameters of the
heaping probability function are relative frequencies. The accordant frequencies are obtained by
dividing the number of values at the respective heaping points by the number of values in the
accordant catchment areas. With approximately 80 min, the procedure needs considerably less
time to �t the model to the data as under simulation Setting 1. Table 6 shows the estimates θ̂
of the model parameters θ, their standard errors, and the respective 95% con�dence intervals.
Again, 100 bootstraps have been taken to yield the latter ones. In sum, our approach reproduces
the parameters ηb, for b = 1, . . . , 20 of heaping probability function (3) with high accuracy.
However, we observe notable�though, not highly signi�cant�deviations. In the interval [0; 1, 000],
the probabilities of heaping to a multiple of 100 di�erent from 500 are underestimated (concerning
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Table 6
Parameter estimates and measures of uncertainty (standard errors and 95% con�dence intervals
CI) according to Simulation 2 �steadily increasing/descreasing heaping probabilities�.

Parameter True Value Estimated Standard Error CI lower CI upper

Dagum Distribution

a 3.60 4.28 0.09 4.11 4.45
b 2, 416.00 2, 801.25 41.37 2, 737.57 2, 900.03
q 0.43 0.31 0.01 0.29 0.34

Heaping Probabilities

Set 1 0.55 0.53 0.05 0.46 0.64
Set 2 0.55 0.51 0.02 0.47 0.56
Set 3 0.55 0.51 0.02 0.46 0.54
Set 4 0.55 0.52 0.02 0.48 0.55
Set 5 0.50 0.48 0.02 0.45 0.51
Set 6 0.55 0.56 0.02 0.53 0.59
Set 7 0.55 0.53 0.03 0.48 0.58
Set 8 0.50 0.54 0.04 0.44 0.61
Set 9 0.25 0.30 0.02 0.26 0.33
Set 10 0.25 0.28 0.01 0.25 0.31
Set 11 0.30 0.32 0.02 0.29 0.36
Set 12 0.35 0.37 0.03 0.31 0.42
Set 13 0.40 0.35 0.03 0.29 0.43
Set 14 0.55 0.53 0.07 0.42 0.70
Set 15 0.20 0.21 0.01 0.19 0.23
Set 16 0.25 0.24 0.01 0.22 0.26
Set 17 0.30 0.31 0.01 0.28 0.33
Set 18 0.40 0.39 0.03 0.34 0.44
Set 19 0.50 0.46 0.05 0.39 0.56
Set 20 0.50 0.52 0.04 0.43 0.59

Sets 2 and 3), while the probability of heaping to 500 is overestimated (Set 9). Similarly, in the
interval (4, 000; 5, 000], the parameter determining the heaping probabilities corresponding to
multiples of 100 that are not also multiples of 500 is overestimated (Set 8). Compared with
this, the parameters corresponding to heaping probabilities related to multiples of 500 and 1, 000
are underestimated (Sets 13 and 19). For values greater than 4, 000, we �nd that our parameter
estimates are less accurate (Sets 8, 13, 19, 14 and 20). However, this is clearly caused by the small
number of values in this interval. To sum up, for the design chosen, Simulation 1 reproduces the
parameters specifying the true heaping probability function more accurately than Simulation 2.
Opposing the true and estimated parameters of the Dagum distribution, we �nd that Simulation
2 produces better results than Simulation 1: The parameters estimated within Simulation 2 are
closer to the true ones, even though they still di�er signi�cantly. However, putting the estimated
and the true density function of the Dagum distribution on top of each other shows only slight
discrepancies between both curves, as can be seen in the graph on the right in Figure 5. In total,
the maximal discrepancy between the two points of the density functions is smaller than 5 ·10−5.

Considering the complexity of the simulation design presented, we rate the results of both simu-
lation studies as being pretty good, though, impediments are obvious. Generally, our approach
has to tackle three challenges: First, in both simulation settings considered, catchment areas for
heaping points are nested. Nearly all possible income values lie in the catchment areas of two
or three heaping points. For instance, the value 123 is attracted by zero and 100, and the value
4, 966 lies in the catchment area of 4, 500, 4, 700, and 5, 000. Thus, we suspect that our approach
faces di�culties in always assigning heaped values to the correct catchment areas. Second, in
our model we assume heaping behavior to depend on the magnitude of the true income value
as well as on the types of accessible heaping points�resulting in a large number of parameters
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to estimate (in sum, 23). This has clearly a substantial e�ect on the signi�cance and e�ciency
of parameter estimates. Finally, both simulated data sets feature a high percentage of heaped
values. This complicates the discrimination of heaped and non heaped values. That is, we expect
our approach to perform better if (i) catchment areas are less nested or even disjoint, (ii) less
parameters are used to specify the heaping probability function, and/or (iii) a smaller proportion
of data is heaped. Alternative simulation studies carried out by us substantiate this suspicion.3

Nonetheless, we have designed our simulation studies with the objective of resembling the (in-
dividual) net income data reported in the NEPS Adult Cohort. Hence, concerning grouping of
heaping points and the structure of catchment areas we adhere to the setting presented here.
Simplifying our setting in this direction would be contradicting to what we observe in the data
and thus would make it inapplicable for our purposes.
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Figure 7. Histogram of simulated income distribution according to Simulation 3 �high proportion
of heaped data�.

4.3 Simulation 3: High Proportion of Heaped Data

To comprehensively map the NEPS income data, we have to go a step further. The NEPS income
data features approximately 70 percent of heaped values (cf. section 5), which signi�cantly
exceeds the proportion of values heaped in the simulation studies considered. To test whether
our approach is also capable of dealing with such a high proportion of heaped data, we conduct a
further simulation study. For this purpose, we increase the parameters determining the heaping
probabilities, while otherwise relying on simulation Scheme 1. This way, we obtain a data set with
circa 70% of heaped values (precisely, 69.7%). Figure 7 depicts the resulting income distribution.
The respective parameters are given in the second column of Table 7. The third column of the
table contains the parameter estimates that we �nd. All results underline the feasibility of our
method. However, its impediments are obvious: First, the estimates of the parameters of the
Dagum distribution only roughly resemble the true parameters. Second, due to the very high
percentage of heaped values, some of the re-estimated heaping probabilities are less accurate.
Speci�cally, this concerns values in the interval (3, 000; 4, 000]: Here the heaping probability
corresponding to multiples of 100 that are not multiples of 500 is underestimated (Set 7), while
the accordant probability indicating heaping to multiples of 1, 000 is overestimated (Set 18).

3On request, simulation settings, data, and results are available from the lead author.
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Furthermore, as already noted above, we �nd wide con�dence intervals for areas with only few
observations, that is, mainly for ranges of high income.

Table 7
Parameter estimates and measures of uncertainty (standard errors and 95% con�dence intervals
CI) of the extended simulation study.

Parameter True Value Estimated Standard Error CI lower CI upper

Dagum Distribution

a 3.60 4.99 0.21 4.47 5.32
b 2, 416.00 2, 980.70 57.51 2, 887.76 3, 104.73
q 0.43 0.26 0.01 0.23 0.29

Heaping Probabilities

Set 1 0.45 0.44 0.03 0.39 0.50
Set 2 0.45 0.48 0.03 0.42 0.53
Set 3 0.50 0.50 0.01 0.47 0.52
Set 4 0.50 0.49 0.01 0.46 0.51
Set 5 0.60 0.57 0.01 0.54 0.59
Set 6 0.60 0.57 0.02 0.53 0.61
Set 7 0.55 0.49 0.03 0.42 0.54
Set 8 0.15 0.14 0.03 0.07 0.18
Set 9 0.25 0.25 0.01 0.22 0.27
Set 10 0.15 0.15 0.01 0.14 0.17
Set 11 0.20 0.20 0.02 0.17 0.24
Set 12 0.25 0.25 0.03 0.21 0.30
Set 13 0.35 0.32 0.04 0.24 0.37
Set 14 0.40 0.39 0.05 0.29 0.46
Set 15 0.10 0.10 0.00 0.09 0.11
Set 16 0.20 0.22 0.01 0.20 0.25
Set 17 0.20 0.22 0.01 0.20 0.25
Set 18 0.20 0.25 0.02 0.22 0.30
Set 19 0.50 0.54 0.04 0.49 0.64
Set 20 0.50 0.51 0.04 0.43 0.58

5 Application

To illustrate the potential and also the impediments of our novel approach, we model the heaping
behavior evidently present in the individual net income data reported in the NEPS Adult Cohort,
Wave 2009/2010. In this data set, N = 8, 685 persons gave (usable) information about their
individual net income. Figure 1 shows the respective frequency distribution. The mean is located
at e1, 881 and median at e1, 700 indicating a distribution skewed to the right. The empirical
standard deviation is e1, 303. Within the values e331 and e4, 200 90% of the probability mass is
distributed, marked by the 5th and 95th percentile. Abnormal concentrations of reported values
can clearly be seen. Above the mode of e2, 000, spikes at values ending with 500 (Mod500) and
1, 000 (Mod1000) are quite obvious. The proportions of these heaping points are given in Table 8
with regard to the intervals conceived in section 4. The relative frequency of values ending in 500
is about 10% and of values ending in 1, 000 is about 14%. Most values are rounded to multiples
of 100, circa 45%. In sum, more than 70% of the values are rounded to either zero, a multiple
of 100, 500, or 1, 000. In the intervals (2, 000; 3, 000], (1, 500; 2, 000], and (1, 000; 1, 500], we �nd
their concentration to be highest�which is not surprising when taking into account that these
intervals comprise the majority of income values (63.2%).

To determine `real' heaping points, we restrain the set of potential heaping points to multiples
of 100 and apply the heuristic described in section 2.2. Justi�cation for this restraint is to keep
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Figure 8. Histogram of individual net income data reported in the NEPS Adult Cohort, Wave
2009/2010 (N = 8, 685), with heaping points marked by red dots.

the problem to be studied reasonably small. Clearly, such con�nement limits the scopes of our
analysis: On the one hand, we do not take into account values ending with 5, 10, or 50 for
being heaping points. On the other hand, extraordinary heaping points that can be seen in
our data, such as 399,4 are excluded a priori. However, exploiting the data reveals that each of
these values occurs less than eight times, which is less than 0.1% of the data size. Therefore,
we argue that determining the set of potential heaping points as multiples of 100 is a viable
compromise to reduce the complexity of the problem under study. In total, we �nd 70 heaping
points. Figure 8 illustrates them as red points. In this setting, the number of parameters is
73: 70 parameters for the heaping model and three for the underlying distribution. To reduce
the number of parameters for estimation, we deem it reasonable to rely on the assumptions
presented in section 4. As already argued above, it is a practicable way to facilitate model
estimation by imposing equality constraints on the parameters to be estimated. That is, we
assume that 20 parameters are su�cient to describe the heaping pattern prevalent in our data
(cf. the speci�cation of groups of equal heaping probabilities given on page 10).5 The de�nition of
catchment areas also borrows from the experiences made in the simulation studies. In accordance
with this, we de�ne zero to feature a catchment area from zero to 250. To multiples of 100 that
are not multiples of 500 (Mod100) we assign catchment areas of width 100, and to multiples of
500 that are not multiples of 1, 000 (Mod500) we assign catchment areas of width 500. Likewise,
multiples of 1, 000 (Mod1000) are speci�ed to feature catchment areas of width 1, 000.

In the following, we focus our analysis more on heaping behavior than on the true income
distribution. Our simulation studies show that (in our setting) a heaping model with piecewise
constant heaping probabilities yields more accurate estimates of heaping probabilities than a
heaping model with steadily increasing/decreasing heaping probabilities. Therefore, relying on
these �ndings, we use a heaping model with piecewise constant heaping probabilities for our

4Since April 1, 2003, the threshold value before paying social security contributions into the German system
is e400. Thus, there is reason to presume that 399 is a misreported value.

5The simulation design does not comprise heaping points greater than 5, 000 that are multiples of 100 and
not of 500 (Mod100). In the empirical data, however, we identify 5, 100, 5, 200, 5, 300, 5, 400, 5, 700, 5, 800, 5, 900,
and 6, 300 as being heaping points. For convenience, we add these points to Set 8.
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Table 8
Percentage of values located at the modulos in the income data of the Adult Cohort in the NEPS,
Wave 2009/2010 (N = 8, 685).

Interval Zero Mod100 Mod500 Mod1000 Total

[0; 500] 1.69 2.99 0.74 0.00 5.42
(500; 1, 000] 0.00 4.38 0.00 2.35 6.73

(1, 000; 1, 500] 0.00 9.59 3.68 0.00 13.27
(1, 500; 2, 000] 0.00 11.07 0.00 4.61 15.68
(2, 000; 3, 000] 0.00 11.36 3.04 2.87 17.27
(3, 000; 4, 000] 0.00 4.19 1.59 1.70 7.48
(4, 000; 5, 000] 0.00 1.37 0.63 1.01 3.01
(5, 000; 10, 000] 0.00 0.38 0.22 1.49 2.09

Total 1.69 45.33 9.90 14.03 70.95

analysis rather than a heaping model with steadily increasing/decreasing heaping probabilities.
If modeling were aimed at imputing data, the latter model might be the better choice, because
it allows a more precise resemblance of the true Dagum distribution.

We estimate our model by applying the maximum likelihood procedure described in section 3.
Table 9 shows the corresponding parameter estimates. In addition, it gives their standard errors
and 95% con�dence intervals. Both statistics have been derived by basic bootstrapping (number
of bootstrap samples: 100).

The parameters for the underlying distribution as well as the heaping probabilities are plausible.
The parameters estimated for the Dagum distribution result in a density function with a shape
typical of income data, that is, unimodal and positively skewed (cf. Figure 9). We yield an
expected individual net income of e1, 882 (standard deviation: e1, 159)6 which is more or less the
same as the arithmetic mean derived from the heaped data, e1, 881 (sample standard deviation:
e1, 303). As presupposed, we �nd di�erences between the percentiles estimated from the heaped
data and the percentiles estimated from the true underlying Dagum curve:

25th 50th 75th

Heaped data e1, 000 e1, 700 e2, 402
Estimated Dagum curve e1, 007 e1, 771 e2, 570

In sum, however, the discrepancies are smaller than expected. The only exception being the
value of the 75th percentile, which di�ers remarkably.

Concerning the estimated heaping probabilities, �ve di�erent observations can be pointed out.
First, the overall pattern shows that the higher the income of an individual, the more prone
he/she is to heap the accordant value. Second, the probability sets for Mod100 (Set 2 up to
8) have the highest values compared to Mod500 (Set 9 up to 14), or Mod1000 (Set 15 up to
20), respectively. Especially when directly comparing competing intervals, the probabilities of
heaping to Mod100 remarkably exceed all other probabilities. For example, Sets 9 and 2 cover
the interval [0; 500], Sets 10 and 4 cover (1, 000; 1, 500], and Sets 11 and 6 cover (2, 000; 3, 000].
Here, we �nd that the probabilities of heaping to Mod500 are substantially smaller than those
of heaping to Mod100. We observe a similar pattern when comparing the competing intervals
corresponding to Mod1000 and Mod100: Within the intervals (500; 1, 000] (Sets 15 and 3) and
(1, 500; 2, 000] (Sets 16 and 5), the probabilities of heaping to Mod1000 are substantially smaller
than the probabilities of heaping to Mod100. The preference for multiples of 100 (compared to

6The respective formulas are given in Kleiber & Kotz (2003, p. 214).
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multiples of 500 or 1, 000) in the range of values up to e3, 000 is strengthened by the size of the
corresponding standard errors. These are quite small. This means that�although our approach
is confronted with highly nested heaping intervals�it assigns values to the respective heaping
intervals with high accuracy. In sum, we �nd evidence of congenial heaping behavior described
earlier, which leads people to heap to Mod100 more likely in the range up to e3, 000, and to
Mod500 or Mod1000 above. This is accompanied by the �nding that the intervals of the highest
income ranges, namely, the ones above e4, 000, feature heaping probabilities that are highest for
Mod500 (Sets 13 and 14) and for Mod1000 (Sets 19 and 20). Here, we observe comparatively
large standard errors of probability estimates. This is clearly caused by the few observations
made within these ranges.

Table 9
Parameter estimates and measures of uncertainty (standard errors and 95% con�dence intervals
CI).

Parameter Estimated Standard Error CI lower CI upper

Dagum Distribution

a 5.68 0.20 5.32 6.12
b 3, 062.20 44.66 3, 005.72 3, 188.79
q 0.22 0.01 0.19 0.23

Heaping Probabilities

Set 1 0.41 0.03 0.38 0.47
Set 2 0.35 0.02 0.30 0.37
Set 3 0.43 0.02 0.40 0.46
Set 4 0.63 0.01 0.60 0.66
Set 5 0.61 0.01 0.58 0.63
Set 6 0.59 0.01 0.56 0.62
Set 7 0.52 0.02 0.48 0.57
Set 8 0.33 0.05 0.16 0.38
Set 9 0.06 0.01 0.05 0.08
Set 10 0.14 0.01 0.13 0.15
Set 11 0.19 0.01 0.16 0.21
Set 12 0.21 0.02 0.16 0.24
Set 13 0.28 0.04 0.22 0.36
Set 14 0.27 0.05 0.24 0.45
Set 15 0.07 0.00 0.06 0.08
Set 16 0.15 0.01 0.14 0.16
Set 17 0.20 0.01 0.18 0.21
Set 18 0.27 0.02 0.23 0.30
Set 19 0.37 0.04 0.32 0.48
Set 20 0.39 0.05 0.31 0.46

6 Conclusion

This paper presents a statistical approach for modeling heaping patterns arising in self-reported
individual net income data. The main idea is to specify a model for the true underlying (unob-
served) income distribution while simultaneously modeling the behavior leading to heaped data.
Relying on suggestions made in the literature (see Kleiber & Kotz (2003); Bandourian et al.
(2002)), we use the 3-parametric Dagum distribution to describe the true net income distribution.
To determine heaping behavior, we employ two distinct models: First, we constitute that, within
the catchment areas of heaping points, heaping probabilities are constant�resulting in piecewise
constant heaping probabilities. Second, we de�ne heaping probabilities to steadily increase with
their proximity to a heaping point�speci�ed by piecewise bell-shaped heaping probabilities. The
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Figure 9. Histogram of individual net income data reported in the NEPS Adult Cohort, Wave
2009/2010, with estimated Dagum density.

�rst model accounts for the fact that the propensity of an individual to heap depends on his/her
true level of income. In contrast, the second model focuses more on the aspect that people's
propensity to heap is likely to increase with proximity to a heaping point. The de�nition of our
model demands that all heaping points have to be set, that is known, in advance. To comply with
this need, we introduce a heuristic facilitating the identi�cation of heaping points within a given
data set. To prove the applicability of this heuristic and the validity of our novel heaping model,
we have conducted a set of simulation studies. Irrespective of the presumed heaping mechanism
(i.e., piecewise constant or piecewise bell-shaped), the heuristic and the heaping model produce
reliable and highly feasible results. However, caveats are obvious: Very high proportions of
heaped values (more than 70%) as well as highly nested catchment areas clearly limit the accu-
racy of parameter estimates. All in all, we �nd evidence that a heaping model with piecewise
constant heaping propensities is better capable of reproducing the true heaping mechanism than
a heaping model with steadily increasing/decreasing heaping probabilities. In contrast, the latter
heaping model allows us to estimate more accurately the parameters of the Dagum distribution.
After having studied the validity of our approach, we applied it to the individual net income
data reported in the NEPS Adult Cohort in Wave 2009/2010. We �nd that for income values
of up to e3, 000 people have a stronger tendency to heap to multiples of 100 than to multiples
of 500 or 1, 000. In contrast, in the higher income range (those above e4, 000) multiples of
500 and 1, 000 are preferred. With respect to the true underlying distribution of the individual
net income, contrary to our expectations, we �nd the median estimated from the heaped data
(e1, 700) quite close to the one computed from the corrected distribution (e1, 771). A similar
picture emerges for the 25th percentile. Here, we �nd less than 1% di�erence. Only the 75th
percentile di�ers notably (approximately 7%).

To further improve the modeling of heaping behavior, our method can easily be extended to
additionally handle income bracket information. In more detail, most recent surveys dealing
with income data ask people who are not willing or not able to give an exact income value
to assign themselves into income brackets. This way, data collectors try to counteract item
nonresponse and misreporting. In our model, bracket information can be used as a supplement
to better �gure out the true parameters of the Dagum distribution. De facto, for this purpose,
only an accordant term has to be added to the model's likelihood function described in section 3.
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When analyzing heaped income data, special points have to be observed that, by nature, feature
high concentrations of values, such as e0 indicating not having any income and e399 which is
the value directly below the threshold value of e400 for paying social security contributions into
the German tax system. So far, our analysis excludes all values that seem to be be `unusual',
that is, this issue has yet not been addressed in our model and presents a subject for future
research.

Another issue which still has to be addressed is whether, instead of the 3-parameter Dagum
distribution, a 2-parameter distribution such as the log-normal distribution would also su�ce to
describe the true underlying income distribution. Our simulation studies show that signi�cantly
di�erent parameters of the same magnitude result in similar Dagum density functions. This is in
contrast to the parameters of, for example, the log-normal distribution. Here, already very small
changes in the parameters lead to considerably di�erent density functions. Thus, we suspect
that for our purposes the log-normal distribution could su�ce as well. However, this has yet to
be tested.

We are aware that our approach can also be extended in several other directions. First, up to
now we considered symmetric heaping behavior only. This assumption is rather restrictive. For
example, it is well known that many people tend to downsize their real income (see, e.g., Maynes
(1968)). Our idea of complying with such behavior is to describe heaping probabilities using a
logarithmic version of the bell-shaped function, which we suggest would de�ne steadily increase-
ing/descreasing heaping probabilities. Furthermore, we know that heaping propensities are likely
to depend on individual characteristics, such as gender and age, and also on external factors,
such as interview conditions, interview mode, and interviewer characteristics. Such additional
aspects require a consideration of covariates in the heaping model. Likewise, covariates should
be considered when describing the true and unobserved income distribution. Here, the ideas
recently presented by Drechsler & Kiesl (2014) give insights for further research. They suggest
using a log-normal distribution to describe income data and to classify heaping behavior by using
an ordered probit model.

As already discussed in the introduction, having identi�ed the true unobserved income distri-
bution allows us to improve any analysis based on heaped income data. To this end, heaped
and missing values must simply be replaced by values drawn from the true income distribution.
A technique that we regard useful in this context is the method of multivariate imputation by
chained equation (mice) (Raghunathan et al., 2001; van Buuren et al., 2006; van Buuren &
Groothuis-Oudshoorn, 2011). This technique has been designed to encounter item-nonresponse
by replacing missing values with predicted ones on a variable-to-variable basis. That is, once
we have extended our heaping approach to allow for the consideration of covariates determining
the level of income, we are planning to embed it into the mice framework in order to adequately
impute heaped income data.

Generally, our approach can be extended without further ado to also deal with other types of
heaped data, for instance, with duration data. For this purpose, the underlying model can
simply be replaced by a model consistent with the variable of interest. To describe duration
data, for example, a piecewise exponential model is well suited; see, for example, van der Laan
& Kuijvenhoven (2011).
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