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Estimation of Plausible Values using Background Variables with Missing
Values: A Data Augmented MCMC Approach

Abstract

The National Educational Panel Study (NEPS) provides data on the development of compe-
tencies across the whole life span to educational researchers and politicians. Plausible values as
a measure of individual competence are estimated by explicitly including background variables
capturing individual characteristics into the corresponding Item Response Theory (IRT) models.
Despite tremendous efforts in field work, missing values in the background variables can occur.
Adequate estimation routines are needed to reflect the uncertainty stemming from missing values
in the background variables in the estimation of plausible values. To achieve this, we propose
to adapt an estimation strategy based on Markov Chain Monte Carlo (MCMC) techniques that
simultaneously addresses missing values in background variables in the estimation of plausible
values for the competence scores. The resulting hybrid sampling scheme establishes a one-step
approach for the estimation of plausible values using IRT models that incorporate background
variables with missing values. In a simulation study allowing to control the mechanism causing
missing values, we evaluate the validity of our approach with respect to statistical accuracy. The
results show that the proposed approach is capable to recover the true regression parameters
describing the relationship between latent competence scores and background variables. The
approach is illustrated on an example using data from the NEPS on mathematical competencies
of fifth grade students.
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Item response theory, bayesian estimation, missing-data imputation, mathematical competence
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1. Introduction

In large scale studies, such as the National Educational Panel Study (NEPS), an aim is to provide
educational researchers with data that support the investigation of various educational research
questions. Typical research questions concern, for example, the explanation of competencies
and competence development based on individual characteristics, e.g., gender, socio-economic
status, migration background, and context variables, e.g., school characteristics. Competencies
in NEPS are assessed via tests on different domains, such as mathematics, reading, science, and
information and communication technology, see Weinert et al. (2011). While the questionnaire
data are scored based on classical test theory, usually a sum score is provided for scale scores, or
not scored at all when considering for single items, most of the competence data are analyzed via
Item Response Theory (IRT) models. In IRT models the response on test items are described by a
function of the ability of a person as well as characteristics of the item, such as the item difficulty.
IRT models allow for aggregation of individual responses towards latent competence scores that
are purified from measurement error. Typically, scale scores are provided in form of plausible
values, see Mislevy (1991), which usually provide unbiased population estimates of competence
distributions and allow for the investigation of latent relationships between competence scores
and background variables capturing individual characteristics of the participants as well as
context variables. For the estimation of plausible values, the background variables are included
in the measurement model. As such, plausible values may be used to investigate the relationship
between latent competence scores and these background variables. However, despite tremendous
efforts in field work, missing values in these background variables occur. Missing values in
background variables pose a great challenge on the estimation of plausible values. We propose
to use a Gibbs sampling approach based on the device of data augmentation suggested by Tanner
& Wong (1987) to deal with this challenge. In the following paragraphs we first introduce the
IRT-model used for scaling the competence data and draw a special focus on the estimation
of plausible values in these models. We then focus on the problem of missing responses in
the background data and introduce the Markov Chain Monte Carlo (MCMC) method. In the
following sections we combine the MCMC method with the estimation of plausible values in IRT
models and develop an approach that simultaneously estimates plausible values and imputes
missing responses in background variables. The approach is evaluated within a simulation
study and demonstrated on a small empirical example measuring one competence dimension
and having missing responses in two background variables.

2. IRT model for scaling of competence tests

In the National Educational Panel Study different competence domains are assessed, for example,
reading and mathematical competence. The competence domains are assessed by tests that
contain a number of items that may be dichotomously scored as correct or incorrect. Some
items in the test consist of a couple of dichotomously scored tasks, i.e., complex multiple choice
items. For the IRT-analysis they are aggregated to a single polytomous item, see also Andrich
(1985). These items indicate the number of correct answers given for a complex MC item. The
competence data in NEPS are scaled using the multidimensional random coefficients multinomial
logit model, see among others Adams, Wilson, & Wang (1997) and for a description of the
scaling model for the competence data in NEPS, see Carstensen & Pohl (2012). A special
case of the multidimensional random coefficient multinomial logit model is the Partial Credit
Model as introduced in the literature by Masters (1982). In the Partial Credit Model, the
Rasch model of Rasch (1960) for dichotomous data is extended to ordered polytomous data.
The multidimensional random coefficients multinomial logit model is a general model, which
encompasses both the simple Rasch model and the partial credit case. The formulation of these

NEPS Working Paper No. 38, 2014 Page 3



Aßmann, Carstensen, Gaasch, & Pohl

models as the mixed coefficients multinomial logit was shown by Adams & Wilson (1996). Within
that framework, in the unidimensional case the probability of a response being in category m of
item j for individual i is given by

P (Yijm = 1|θi) =
exp(bjmθi + a

′

jmξ)

Mj∑
m=1

exp(bjmθi + a
′

jmξ)

, i = 1, . . . n, j = 1, . . . , J, m = 1, . . . ,Mj , (1)

where θi is the scalar ability parameter of person i,

b = (b11, b12, . . . , b1M1 , b21, . . . , b2M2 , . . . , bJ1, . . . , bJMJ
) (2)

is a vector of scoring functions with bjm reflecting the performance level (scoring) of each possible
item category, ξ = (ξ1, ξ2, . . . ξp) is a vector of p item difficulty parameters, and

A = (a11,a12, . . . ,a1M1 ,a21, . . . ,a2M2 , . . . ,aJ1, . . . ,aJMJ
) (3)

is a design matrix of design vectors ajm, each of length p, giving the empirical characteristics
of the item categories. In this formulation, θi is regarded as a random parameter with density
function g(θi|α) for all i. Mostly, the population distribution g(·) is assumed normal with mean
µ and variance σ2. Adams, Wilson, & Wu (1997) formulated the mixed coefficients multinomial
logit model as a multilevel model with persons as level-2 units and responses as level-1 obser-
vations. This model allows to simultaneously model item responses and structural relations by
allowing the inclusion of explaining variables for the latent competence variable. If such ex-
plaining variables (background variables) are included in the model the residual distribution of
g(·) is assumed normal with mean Ziγ, where Zi denotes a vector of individual characteristics
(background variables) influencing individual ability. This corresponds with the multivariate
regression equation

θi = Ziγ + εi, εi ∼ N (0, σ2). (4)

The model is easily extended to a multidimensional model and estimation of this model is rou-
tinely performed via the maximum likelihood principle, see Adams, Wilson, & Wu (1997) for
details. The ability of persons may be estimated using different approaches. One approach
is maximum likelihood estimation, see e.g. Warm (1989). The second approach is based on
Bayesian statistics. Ability estimates are obtained either as expected values (EAP), mode
(MAP) or random draws (plausible values) of the posterior distribution of θ given the item
responses, the item parameters, and also background variables. The concept of plausible values
was introduced by Mislevy (1991) and is based on the work of Rubin (1987) on multiple impu-
tation. Plausible values are nowadays state of the art, e.g. OECD (2009), since they estimate
ability as a latent variable with random effect and, thus, allow to estimate latent relationships of
competence scores and background variables. In order to estimate plausible values, the relevant
background variables need to be included in the measurement model. Note, that the inclusion
of certain background variables for estimating plausible values is essential when one aims at
using the plausible values for investigating relationships of competence with these background
variables. Adams, Wilson, & Wu (1997) include background variables as level-2 predictors. The
estimation of plausible values becomes non-trivial when missing values occur in the background
variables. Missing values in questionnaire items are routinely treated via multiple imputation,
see Rubin (1987). Since the released data will be used for a variety of research questions - which
are not known at the time of data release - providing appropriate data for all these analyses
is a great challenge. This is especially prevalent for the estimation of plausible values and for
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imputing missing responses. For both estimations, an appropriate imputation model is needed
that includes all relevant background variables needed in later analyzes. Specifically question-
naire variables (i.e., background variables) are needed for the estimation of competence scores
(plausible values) and questionnaire variables as well as competence scores are needed for the
imputation of missing responses in questionnaire items. Other large scale studies, such as the
Programme for International Student Assessment (PISA) and the National Assessment of Edu-
cational Progress (NAEP) deal with this problem by aggregating the questionnaire variables to
orthogonal factors and using the set of factors as background variables in the IRT measurement
model of the competence data, see Allen et al. (2001). Thereby, as many factors as needed to
explain 90 percent of the variance of the questionnaire items are considered. However, this ap-
proach is a two-step approach that does not incorporate all questionnaire variables and does not
depict the uncertainty stemming from missing values in questionnaire items. In the following we
will describe a data analysis strategy that applies the multilevel random coefficients multinomial
logit model to univariate competence measurement settings in the German National Educational
Panel Study. The proposed estimation routine is designed to cope with missing information on
individual level variables influencing person abilities. Ensuring the validity of empirical compe-
tence measures given the uncertainty stemming from missing values in background variables we
adopt a bayesian estimation scheme that allows a conceptually stringent treatment of missing
values in observed individual characteristics via the device of data augmentation, see Tanner &
Wong (1987). Bayesian estimation is implemented using Markov Chain Monte Carlo (MCMC)
techniques, namely Gibbs sampling, which are ideally suited to deal with the hierarchical struc-
ture of the model and the incorporation of a missing data imputation step. In addition, the
usage of MCMC simulation methods proved straightforward for complex IRT models relative to
marginal maximum likelihood as discussed in Patz & Junker (1999). To illustrate the approach,
we restrict the distribution of missing values to the normal distribution, where nonparametric
distributions provide a valid and highly flexible alternative.

3. Bayesian inference using Markov Chain Monte Carlo tech-

niques

Bayesian inference is concerned about the posterior distribution p(ψ|S) and corresponding mo-
ments thereof. A general introduction on the basic principles employed in the following is
provided by Geweke (1999) and Koop (2003). Gibbs sampling is a device to produce a sample
from the joint posterior distribution of the parameter vector ψ, which can be used to estimate
posterior moments and density estimates. Posterior draws of ψ partitioned into convenient
blocks ψ = {ψ1, . . . , ψT } are obtained via Gibbs sampling, when direct sampling from the pos-
terior distribution is difficult, but sampling from the full conditional distributions is directly
accessible. The functional forms of the full conditional distributions can be deduced from the
joint posterior distribution of parameters ψ and the sample data S

p(ψ, S) = L(S|ψ)π(ψ), (5)

where L(S|ψ) denotes the model likelihood and π(ψ) denotes the a priori distribution, via
isolating the kernel of a single parameter block ψt conditional on all other blocks ψ1, . . . , ψt−1,
ψt+1, . . . , ψT and the data S, i.e.

p(ψt|ψ1, . . . , ψt−1, ψt+1, . . . , ψT , S). (6)
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Given an initialization ψ(0), the Gibbs sampling algorithm simulates iteratively for r = 1, . . . , R
from the full conditional distributions

p(ψ1|ψ2, . . . , ψT , S),

...

p(ψT |ψ1, . . . , ψT−1, S).

The iterative sampling constitutes a Markov Chain, which ensures under general regularity
conditions given in Chib (2001) convergence to the joint posterior distribution.1 Since these are
fulfilled within the considered class of Rasch models, the convergence of the joint distribution of
the sample {ψ(r)}Rr=1 for R→ ∞ towards the posterior distribution p(ψ|S) is ensured. Since the
functional forms of the full conditional distributions depend on the assumed prior distributions,
these are in general conveniently chosen to facilitate sampling from closed form full conditional
distributions.

4. Estimation algorithm for Binary Rasch model with missing

information in background variables

To illustrate the proposed treatment of missing values, we refer to a simplified version of the
model outlined in Equation (1). This simplified version, which allows for closed form sampling
from the full conditional distributions employed within the Gibbs sampler, is derived as follows,
see also Aßmann & Boysen-Hogrefe (2011) for a general treatment of Bayesian estimation for
binary panel probit models. Consider the likelihood of the model stated in Equation (1) given
as

L(S|{θi}
n
i=1) =

n∏

i=1

J∏

j=1

Mj∏

m=1




exp(bjmθi + a
′

jmξ)

Mj∑
m=1

exp(bjmθi + a
′

jmξ)




yijm

. (9)

1Following Chib (2001), the transition from ψ
(r)
t to ψ

(t+1)
t is accomplished by sampling from the

p(ψt|ψ1, . . . , ψt−1, ψt+1, . . . , ψT , S). The transition of the Markov Chain constituting out of T blocks is then
described for all continuous distributions as

Θ(ψ(r), ψ(r+1)) =
T∏

t=1

p(ψt|ψ1, . . . , ψt−1, ψt+1, . . . , ψT , S). (7)

Sufficient conditions for convergence can then be stated as follows. Let Θ(ψ,ψ′) denotes the transition density
of the Gibbs sampler and let ΘR(ψ0, ψ

′) be the density of ψ′ after R iterations of the Gibbs sampler given the
initialization ψ0. Then

||ΘR(ψ0, ψ
′)− p(ψ|S)|| → 0 as R → ∞, (8)

where || · || denotes the total variance distance. As it is shown by Roberts & Smith (1994), convergence is ensured
under the following conditions

1. p(ψ|S) > 0 implies there exists an open neighborhood Nψ containing ψ and ξ > 0 such that, for all ψ′ ∈ Nψ,
p(ψ′) ≥ ξ > 0;

2.
∫
f(ψ)dψk is locally bounded for all k, where ψk is the kth block of parameters;

3. the support of ψ is arc connected.

Note that these conditions are not met only for pathological cases.

NEPS Working Paper No. 38, 2014 Page 6



Aßmann, Carstensen, Gaasch, & Pohl

Setting Mj = 2, i.e. considering only dichotomous items, restricting ajmξ = ξj for all m and

normalizing bj1 =
ξj
θi

, bj2 = 1 and change of notation yij1 = 1−yij2 = yij results in the likelihood

L(S|{θi}
n
i=1) =

n∏

i=1

J∏

j=1

(
(exp{θi − ξj})

yij

1 + exp{θi − ξj}

)
. (10)

To solve non-identifiability of the parameters, the sum of the item difficulties equals zero, i. e.∑J
j=1 ξj = 0. In conjunction with a mixing distribution g(θi) given as

g(θi|Zi) = (2π)−.5(σ2)−.5 exp{−
1

2σ2
(θi − Ziγ)

2} (11)

allows for derivation of the likelihood

L(S) =
n∏

i=1

∫ J∏

j=1

(
(exp{θi − ξj})

yij

1 + exp{θi − ξj}

)
g(θi|Zi)dθi. (12)

As for this likelihood no conjugate priors for parameters exist, facilitating either direct sampling
or closed form sampling from the corresponding full conditional distributions, we further change
from logit to probit. This allows for Bayesian estimation via Gibbs sampling along the lines
suggested by Albert (1992). The likelihood is then given as

L(S) =
n∏

i=1

∫ J∏

j=1

Φ((2yij − 1)(θi − ξj))g(θi|Zi)dθi, (13)

with corresponding full conditional distributions given as follows. Additionally, the missing
values in background variables are augmented by a parametric method at each iteration that
allows the researcher to account for the uncertainty created by a single imputation step. As the
model does not involve information concerning the full conditional distribution of the missing
values, a hybrid sampling scheme is adopted, where draws for the missing values are obtained
from a normal model. After initializing parameters, this leads to the following iterative scheme
taking steps r : 1 → R for repetition r:

Step 1) Sampling the underlying latent variable y∗ij from a truncated normal distribution with
corresponding parameters

µy∗ij = θi − ξj , and σy∗ij = 1,

where truncation sphere is (−∞, 0) for yij = 0 and (0,∞) for yij = 1.

Step 2) The individual abilities θi are sampled from a normal distribution with moments de-
fined as follows

µθi =

(
N∑

i=1

y∗ij +

N∑

i=1

ξi + Zjγ/σ
2

)
(
n+ 1/σ2

)
−1
, and σ2θj =

(
n+ 1/σ2

)
−1
.

Step 3) Let the independent conjugate prior for γ be multivariate normal with moments mean
vector νγ and covariance matrix Ωγ . Then draws from full conditional distribution for γ
are obtained from a multivariate normal distribution with corresponding moments given
as

µγ = (Z ′θ/σ2 + Ω−1
γ νγ)(Z

′Z/σ2 + Ω−1
γ )−1, and Σγ = (Z ′Z/σ2 + Ω−1

γ )−1.
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Step 4) Choosing the independent conjugate prior for σ2 inverse gamma with parameters α0

and β0, the σ2 is also distributed inverse gamma with corresponding parameter

α = n/2 + α0, and β =

(
0.5

n∑

i=1

(θi − Ziγ)2 + β0

)
−1

.

Step 5) Impute item nonresponse in the n×K matrix of background variables Z via specifying
a univariate normal full conditional distribution for each of the K variables contained in
Z. Within the intercourse of the Gibbs sampler, imputed and hence complete variables
are at hand for each iteration m, resulting in the following K regression equations given
as

Zk = Wkϕk + ǫk, k = 1, . . . ,K,

where Wk = (ι, Z−k, θ, SC), where SC denotes the vector of score sums for each individual.
Imputations are then generated as follows. Each missing values in Zk is replaced via a draw

from a univariate normal distribution with moments µ = W ′

misϕ̂ and σ2 = σ̂2ǫ . Note that

instead the least squares estimators ϕ̂ and σ̂2ǫ often draws from the corresponding asymp-
totic distributions are used for generating draws for the missing values in Z. However,
as imputation is performed within each iteration of the Gibbs sampler, the corresponding
uncertainty is accounted for. Further, it should be explicitely noted that the estimation
scheme introduces the updated draws of the individual abilities θ into the imputation
model for each iteration.

Note that the sampler given here assumes knowledge of the item difficulty parameters. Often
simultaneous estimation is a straightforward extension of the outlined approach. Given an
sample of all model parameters obtained via iterative sequential cycling through the set of full
conditional distributions, the plausible values for each individual can be directly taken from the
provided Gibbs output. Each sweep {θi}

R
r=1, i = 1, . . . , n from the posterior distribution could

be taken as a vector of plausible values.

5. Simulation study

To assess the validity of our approach suggested above, we set up a simulation design comparing
the data augmented Gibbs sampler, when missing values occur, with the full sample estimates
before deletion. Given this benchmark situation, the relative performance to recover a set of
given parameters in the presence of missing data in the background variables can be evaluated.
Replication analysis is a method commonly used for this purpose. The data augmented estima-
tion procedure is conducted for C = 200 replications of a single data generating process and a
missing generating process. Then, the root mean squared error and the proportion of 95% high-
est posterior density regions that contain the true parameter values (coverages) are computed
as the main criteria for comparison. The detailed conditions of the data generating and missing
values generating processes are as follows.

For each replication c = 1, . . . , C, the binary response pattern is simulated using the model
in (13) with a sample setup of n = 2000 individuals facing J = 10 items, where the item
difficulties are specified as draws from a normal distribution, ξj ∼ N(0, 0.5). Three background
variables X explaining differences in individual abilities θi are generated from a standard normal
distribution and are having a correlation of 0.5. Then observations in X2 and X3 are deleted
via a missing process according to two different scenarios I and II. In scenario I, on average
5% and 10% missing values result completely at random for the variables, in scenario II these
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rates of missingness increase to 10% and 20% and depend on X1. The regression weights of the
background variables including an intercept take on the values γ = (1,−0.5, 0.5,−0.5), while
the individual abilities are distributed with variance parameter σ2 = 1.44.

Table 1 shows the means of the posterior expected values and their standard deviations over C =
200 replications. For both missingness scenarios, our approach reveals an unbiased estimation
of all parameters. Also with respect to the error and the coverage rate, the findings support
that there is no notable difference to the full sample estimates before deletion reported in the
first block columns of the table. Approximately, the observed number of intervals covering the
particular parameter corresponds to the theoretical values. Thus, our proposed sampler is a
suitable solution for the use of partially observed background variables in the context of IRT
models, even with a relatively large amount of missing values present.

Table 1: Mean of the posterior means and standard deviations, root mean squared error and
coverage of C = 200 replications for a data set before deletion (BD), missing scenario I and
missing scenario II.

mean sd RMSE coverage

Parameter true BD I II BD I II BD I II BD I II

γ1 1.000 1.003 1.002 1.002 0.035 0.036 0.036 0.037 0.038 0.037 0.935 0.930 0.930
γ2 −0.500 −0.505 −0.505 −0.504 0.039 0.039 0.040 0.037 0.038 0.038 0.955 0.940 0.940
γ3 0.500 0.506 0.506 0.506 0.039 0.040 0.041 0.042 0.043 0.043 0.930 0.920 0.940
γ4 −0.500 −0.506 −0.506 −0.507 0.039 0.040 0.042 0.040 0.042 0.044 0.935 0.930 0.940

σ2 1.440 1.459 1.457 1.457 0.077 0.078 0.078 0.082 0.082 0.081 0.925 0.925 0.945

6. Empirical Application

To illustrate the usefullness of our approach, we apply the augmented random coefficient IRT
probit Gibbs sampler to an exemplary research question. We use data from the National Edu-
cational Panel Study (NEPS): Starting Cohort 3 - 5th grade (From Lower to Upper Secondary
School), doi:10.5157/NEPS:SC3:1.0.0 (Blossfeld et al., 2011) assessing mathematical competence
of students in fifth grade (see Neumann et al., 2013, for the description of the assessment of
mathematical competence in NEPS; Duchhardt & Gerdes (2012) for the description of the re-
spective competence data; and Skopek et al. (2013) for the data manual). The data used in
this analysis contains information on n = 5130 students who have a valid response to at least
one of J = 23 binary mathematics test items. Missing values in the test item set were ignored,
see Pohl et al. (2013) for a comparison of different approaches for treating missing responses
in competence tests. In addition to the test results, we consider gender, self-concept beliefs
in mathematical skills and satisfaction with school as explanatory variables for the analysis.
Descriptive statistics for the data considered in the application are displayed in Table 2. With
6% and 3% missing values for mathematical self-concept and school satisfaction, the amount of
missing data is relatively small.

Table 2: Descriptive statistics background variables.

Variable min max mean sd missing

female 0 1 0.48 - 0.00
self-concept 1 4 2.94 0.85 0.06
schoolsat 0 10 7.72 2.52 0.03

Notes: n = 5130

We applied the proposed data augmented Gibbs sampling approach to the data for estimating
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the regression coefficients of the latent mathematics score on gender, mathematical self-concept
and school satisfaction. The data augmented Gibbs sampling approach is able to deal with the
missing values in two background variables while simultaneously estimating plausible values for
the mathematical competence. The algorithm showed a good convergence behavior. The trace
plots show no indication of convergence problems (Figure 1), also the autocorrelations become
very low (Figure 2) and the cumulative means converge (Figure 3). Taken a burn-in period
of 2000 draws, the regression coefficients of gender, school satisfaction and mathematical self-
concept were based on R = 8000 simulated draws. Table 3 depicts the estimated posterior means
and standard deviations, as well as the 95% Highest Density Intervals (HDI). While the results
indicate a lower level of competence for females, the other two variables have a positive effect on
students mathematical abilities. Note that the regression coefficients reflect the relationship of
questionnaire variables with latent mathematics scores that are purified from measurement error.
The estimated standard errors of the regression coefficients incorporate not only the uncertainty
due to person sampling, but also uncertainty due to missing values in the predictors.

Table 3: Parameter estimates of the random coefficient IRT probit

Parameter mean sd 95% HDI

γ1 (constant) −0.509 0.053 [-0.611; -0.408]
γ2 (female) −0.121 0.019 [-0.158; -0.085]
γ3 (self-concept) 0.221 0.011 [0.198; 0.243]
γ4 (schoolsat) 0.026 0.004 [0.019; 0.034]
σ2 0.330 0.009 [0.314; 0.348]

Notes: n = 5130

7. Conclusion

In large scale assessments researchers are usually interested in explaining competence scores by
individual characteristics and context variables. Simultaneously accounting for measurement
error in competence scores and missing values in background variables capturing individual
characteristics and context variables is challenging. We proposed a data augmented MCMC
approach that simultaneously estimates plausible values and accounts for missing values in
background variables. With this approach latent relationships between competence scores and
background variables may be estimated which efficiently incorporate the uncertainty stemming
from only partially observed background variables. In a simulation study the proposed approach
proved to adequately recover the model parameters to be estimated, even when higher rates of
missingness occur in the data. The applicability to educational research data could be illustrated
on an empirical example. Especially the iterative use of updated parameter values from posterior
sampling for the imputation model showed an appealing feature of our approach. Future research
should focus on considerations of an alternative imputation step coping with the often categorical
character of background variables in research questions involving a larger set of variables.
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Figures

Figure 1: Trace plots for the regression constant (γ1), the regression coefficients for sex (γ2),
mathematical self-concept (γ3) and school satisfaction (γ4), as well as the residual variance (σ2).
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Figure 2: Lag-1 autocorrelation functions for the regression constant (γ1), the regression coef-
ficients for sex (γ2), mathematical self-concept (γ3) and school satisfaction (γ4), as well as the
residual variance (σ2).
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Figure 3: Cumulative mean functions for the regression constant (γ1), the regression coefficients
for sex (γ2), mathematical self-concept (γ3) and school satisfaction (γ4), as well as the residual
variance (σ2).
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