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Bayesian analysis of binary panel probit models: The case of measurement
error and missing values in explaining factors

Abstract

Since large panel data sets, e.g. on educational or epidemiological issues, are despite tremen-
dous e�orts in �eld work almost inevitably plagued by missing data and measurement error, the
development of appropriate estimation techniques is necessary. Bayesian analysis facilitated via
Markov Chain Monte Carlo (MCMC) sampling algorithms allows for conceptually straightfor-
ward treatment of measurement error and missing values based on the device of data augmenta-
tion. Augmenting the parameter vector by the missing values allows for direct incorporation of
the uncertainty stemming from missing values into parameter estimation. Full conditional dis-
tributions for missing values are provided on the basis of a nonparametric sequential regression
modeling approach. For empirical illustration the proposed methodology is applied for students
participating in a survey of the National Educational Panel Study (NEPS) assessing the impact
of curricular reforms. The empirical application points at the necessity to cope with missing data
and measurement errors in order to avoid biased estimation. Additionally a simulation study is
performed documenting the adequacy of the proposed estimation methodology.

Keywords

MCMC ; Bayesian Analysis ; Binary Probit ; Measurement Error ; Panel Data; Nonresponse ;
CART ; Metropolis-Hastings ; Missing Values ; Imputation
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1. Introduction

Binary panel probit models serve as workhorse analytical tools, especially in the context of large
panel surveys. Next to substantial empirical analysis addressing various topics in economics,
sociology and demography, see e.g. Hyslop (1999); Fleming & Klera (2008); Holm & Jæger (2011)
and Contoyannis et al. (2004), binary probit allow for documentation of panel participation
and panel attrition. While analysing complete case data likelihood based estimation routines
are available for all kinds of variations of the basic binary framework, e.g. extensions dealing
with serial correlation and latent heterogeneity, see e.g. Albert & Chib (1993) or Casella &
George (1992), only few approaches are documented within the literature dealing with analysis
of incomplete data setups, see Münnich & Rässler (2005). A conceptually straightforward way
to deal with missing values is provided within a bayesian framework via the device of data
augmentation as suggested by Tanner & Wong (1987); Geman & Geman (1984) and Gelfand
& Smith (1990). With the fundamentals of bayesian estimation provided by Albert & Chib
(1993), augmenting the parameter vector with the missing values allows for incorporation of
the uncertainty of missing values into parameter estimation via iterative sampling from the
corresponding full conditional distributions. The main goal of this article is the integration of
measurement error and missing values in a binary probit model framework. For demonstration,
the participation status is used as binary variable as it opens up the method for inference about
(non-) response. Additionally, an institutional context (hierarchical structure of the data) is
assumed as it �ts to the empirical application. The article is structured as follows. First, the
general model formulation and estimation is described. Second, the empirical application data
is introduced. Third, the setting and the results of a simulation study are presented. Fourth,
the results of the empirical application are described and �nally a summary concludes.

2. Model formulation and estimation

We want to handle the uncertainty of measurement error and item nonresponse within parameter
estimation. As we use the participation status as dependent variable, a binary probit or logit
model is suitable to detect possible e�ects of covariates on the decision to participate or not in
the study. We decided in favor of the probit model, because the inherent distributional assump-
tions in comparison to the logit assumptions are more suitable for our model, where we want to
perform a bayesian model parameter estimation and some imputations. When a standard probit
regression is used the question whether selection e�ects exist is decided based on data neglecting
the hierarchical struture of the data. Furthermore, it is obvious, that an estimation solely based
on complete cases would completely ignore the additional information that can be contributed
by the integration of partially missing information. As we want to incorporate as much informa-
tion as possible to get valid estimates, ways have to be found how to cope with this challenge.
The current literature on missing values, measurement errors or imputation methods (e.g. Rubin
(1987); Little (1992); Albert & Chib (1993); Schafer (1997); Xie & Paik (1997); Schafer (1999);
Raghunathan et al. (2001); Dunson et al. (2003); Nasrollahzadeh (2007)) suggest the use of a
bayesian Gibbs sampling approach, where all kinds of parameters can be estimated and uncer-
tainty due to missing data can be incorporated as well. The di�erent parts of our estimation
algorithm will be explained in detail in the following. Our general model framework is based on a
bayesian probit regression model with second level random e�ects and will be described �rst. As
we have to deal with some kinds of missing values, the steps necessary to cope with this problem
are discussed in the second part of this chapter. Missing independent values are imputed via
an adapted classi�cation and regression tree (CART) approach originally described by Breiman
et al. (1984) and recently used for imputation by Burgette & Reiter (2010). Uncertainty arising
from missing values in the dependent Y variable of the binary probit model is incorporated via
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an Metropolis-Hastings based imputation step (Chib & Greenberg, 1995) we call Probit Forecast
Draw.

Note that the description uses an assumed school as institutional context and students as in-
dividuals as it eases the transfer to the empirical application and is more descriptive. First of
all, a binary probit model with random second-level-e�ects will be set up in order to correctly
gauge possible school level e�ects and the hierarchical structure of students being in homogenous
contexts and learning environments. This model allows for the integration of several imputation
steps needed to deal with the uncertainty in the data due to the mentioned measurement error
and missing values as well. Therefore, a Gibbs sampling approach is to be de�ned in the second
part of this section. For the speci�cation of the bayesian probit model, let yij denote the ob-
served dichotomous variable, with i = 1, . . . , Nj and j = 1, . . . , J , where Nj denotes the number
of students in school j and J denotes the number of schools. Then a link between observed
explaining factors and the observed binary variables is provided via the latent variable zij :

yij =

{
1, if zij ≥> 0,
0, if zij < 0,

(1)

where zij = Xijβ+uj + eij and eij is an independent identically normally distributed error term
with unit variance and uj a cluster-speci�c random error term with N (0, σ2u). Pooling hence
yields the complete likelihood

LP (Y |β,X, uj) =

J∏
j=1

Nj∏
i=1

Φ [(2yij − 1)(Xijβ + uj)] , (2)

where Φ(·) denotes the cumulative distribution function (cdf) of a standard normal distribution.
The posterior distribution using data augmentation (Tanner & Wong, 1987) is then:

π(β, Z, uj , σ
2
u|Y,X) ∝ π(β)π(σ2

u)

J∏
j=1

Nj∏
i=1

{I(zij > 0)I(yij = 1)

+ I(zij ≤ 0)I(yij = 0)}φ(zij ;x
′
ijβ + uj , 1)φ(uj ; 0, σ2

u)

(3)

This joint distribution is complicated in the sense that it cannot be sampled from directly. But
via Gibbs sampling and the calculation of the full conditional distributions the marginal posterior
distribution of β can be estimated. Following Nasrollahzadeh (2007), the posterior distribution
of β given Y, u, σ2u, Z and X ist then

π(β|Y, u, σ2
u, Z,X) ≈ π(β)

J∏
j=1

Nj∏
i=1

φ(zij ;x
′
ijβ + uj , 1). (4)

With the proper conjugate N (β∗, B∗) prior it follows N (β̃, B̃) with parameters

β̃ = (B∗−1 +X ′X)−1(B∗−1β∗ +X ′(Z − u)) (5)

and

B̃ = (B∗−1 +X ′X)−1. (6)

The posterior distribution of Z|X,β, uj , σ2u also has a simple form truncated normal distribution
N (x′ijβ + uj , 1), truncated at the left by 0 if yij = 1 and truncated at the right by 0 if yij = 0.

The full conditional of uj |Z,X, β, σ2u is given as a N (µuj , σ
2
uj ) with parameters

µuj =

(
Nj +

1

σ2u

)−1 Nj∑
i=1

(zij − x′ijβ)

 (7)
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and

σ2uj =

(
Nj +

1

σ2u

)−1
. (8)

The covariance matrix σ2u of the random coe�cients is sampled from independent inverse gamma
distributions IG(ασ2

u
, βσ2

u
) with parameters

ασ2
u

=
J

2
+ α0

σ2
u

(9)

and

βσ2
u

=
1

2

J∑
j=1

u2j + β0σ2
u

(10)

where the parameters of the conjugate inverse gamma prior distribution IG(α0
σ2
u
, β0σ0

u
) are α0

σ2
u

= 1

and β0σ2
u

= 1.

Estimation

To determine the necessary steps for the estimation and imputation procedures, four di�er-
ent data situations can be distinguished (see �gure 1): complete cases (1), cases with missing
participation indicator and complete values in explanatory variables (2), cases with complete
participation indicator and missing values in explanatory variables (3) and cases with missing
values in the participation indicator and in explanatory variables (4). Whereas situation (1) is
straightforward to estimate with standard probit regression, missing values for cases (2)-(4) are
handled via two di�erent imputation approaches, that will be explained in the following.

CART is a non-parametric algorithm for recursive partition respective to the dependent variable
and was invented by Breiman et al. (1984). CART divides the data into disjoint subgroups
within each partition step. Binary splits are used for the partition comparable to e.g. QUEST
(Loh & Shih, 1997) and GUIDE (Loh & Vanichsetakul, 1988), whereas other procedures, e.g.
FIRM (Hawkins, 1990), use multiway splits. The split criterion for each of those partition steps
is the maximization of the decrease of heterogenity. As measure of heterogenity the variance
for continuous and the entropy for non-continuous variables is used. The usage as imputation
procedure has been shown by Burgette & Reiter (2010) and is described in the following.

When imputing and using multivariate imputation by chained equations (MICE), conditional
models have to be speci�ed for all variables with missing data, including interactive and non-
linear relations between variables when they occur. When the knowledge about the conditional
distribution is low Burgette & Reiter (2010) propose a CART-based MICE, de�ned as follows.
When using MICE they replace �lling in initial values by draws from the predictive distribution
conditional on the matrix of all variables with complete and yet imputed cases and also drawing
from the predictive distribution conditional on Y−i (all variables besides the one that has to be
imputed) by CART using a bayesian bootstrap. Using the CART approach of Burgette & Reiter
(2010) simpli�es the users e�ort to impute the data as it is based on recursive partitioning and
not on de�ned conditional models.
Our approach is an extension and adaption of Burgette & Reiter (2010). When de�ning initial
values, they use CART creating a decision tree and drawing an existing value of a leaf that has
the same predictive distribution. The ability to create this tree is limited by the structure of
missing values in the data. If there are only a few or no variables without missing values, the
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creation of a tree is di�cult or impossible. What we suggest therefore, is to sample initial values
unconditional referred to the empirical data with replacement. It can be shown that the e�ect
of sampling those initial values has no e�ect when the CART approach is repeated and updated
several thousand times.
An innovation of our approach is, that possible clusters in the data are regarded. CART is using
the e�ect of a cluster, for example a common mean value, to impute by describing the e�ect by
the value of the cluster. But when imputing the missing value for all elements within a cluster,
for every element a single draw is taken. So we built up a two-CART-model. The �rst step is
the CART approach as described above, using the information of the initial value for the cluster
level, which has to be the same for all elements within this cluster, which means that sampling
initial values has to be adapted, too. In this �rst CART model all values are updated by draws
from the predictive distribution conditional besides the cluster variables. Then a second CART
model is done using the information of all variables aggregated on cluster level. The values that
are drawn can then be added to the data for the single elements.
The most important extension and adaption is, that CART is not used as a single approach to
impute the data, but within a Gibbs sampler in combination with a bayesian probit analysis
which will be described in the following.

Additional to missing values in explanatory variables X, some values of the dependent binary
variable Y are missing as well. In the standard case of listwise or casewise deletion - the default
in most statistical software - the whole information of these cases would be neglected in a model
with Y being missing. According to Little (1992) �cases with Y missing can provide [only] a minor
amount of information for the regression of interest�. Nevertheless, as we want to incorporate as
much information as possible in our approach, we impute these missing values and use all the
information on X available for our estimation in the next step. As Y is the dependent binary
variable of the probit model, it is necessary to draw new 0/1 coded values for the missings.
We use an adapted Metropolis-Hastings algorithm for that purpose see e.g. Chib & Greenberg
(1995).
Suppose the individuals can be classi�ed according to some known classi�cation criteria such as
country, state, region, a�liation to organizations or - as in our empirical application - classes
of students. Then the data set can be clustered into B di�erent blocks and the procedure
can be applied for each block separately. Whether there is additional information regarding
the maximum number (in our application the maximum is known for each class of students,
conditional on sex) or upper bound cb of missing Y 's being 1 within b = 1, . . . , B de�ned blocks
of cases with i = 1, . . . , Nb cases within each block is available, this approach even yields more
appropriate and probable values. Then, the candidates for the Metropolis-Hasting-sequence are
generated as follows:

As a �rst step, one possible candidate set Y
(t)
b with

∑Nb
i=1 ybi ≤ cb is sampled to replace the

missing values in Yb. The probability of this candidate set given the data X and the parameters
β and uj

p
(t)
b =

Nb∏
i=1

Pr(Ybi = 1|Xbi = x) =

Nb∏
i=1

Φ(x′biβ + uj) (11)

compared to the probability of the candidate set p
(t−1)
b then de�nes the probability of move from

Y
(t−1)
b to Y

(t)
b :

prob(Y
(t−1)
b , Y

(t)
b ) =

 min

[
p
(t)
b

p
(t−1)
b

, 1

]
, if p

(t−1)
b > 0

1, otherwise.
(12)
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This Metropolis-Hastings sequence runs T times with t = 1, . . . , T (in our case T = 10) and the

�nal candidate set Y
(T )
b for each block is used to replace missing values in Y . The complete

Y (T ) = {Yobs, Y
(T )
b } is then used in the next sequence of the Gibbs sampler as the dependent

variable for the probit model. As this imputation approach is used to predict missing values in
Y for our bayesian probit model by drawing new values we call this part Probit Forecast Draw.

Now the estimation routine is presented on the whole. Based on the data augmentation device
proposed by Albert & Chib (1993) for bayesian estimation of binary probit models, we establish
a Gibbs sampler dealing the model complications of measurement error within the dependent
and missing values within the explaining factor. The estimation routine then consists out of the
following steps:
Step (I): Initialize all missing values and parameters

Step (Ia): Unconditionally draw new values for Xmis from Xobs

Step (Ib): Maximum likelihood estimation results based on complete cases
provide starting values for the β coe�cients (informative prior for
β)

Step (Ic): Generate one run of the Metropolis-Hastings sequence to draw new
values for Ymis (measurement error) based on the complete values
from (Ia) and (Ib)

Step (II): Generate new values for Xmis for level 1 and level 2 from full
conditional distributions provided by CART analysis

Step (III): Generate one run of the Metropolis-Hastings sequence to draw
values for Ymis (measurement error) based on the complete values
from (Ib) and (II)

Step (IV): Generate new random e�ects variance-components σ2u and uj
Step (V): Calculate new β coe�cients based on steps (II), (III) and (IV)
Step (VI): Return to step (II)

Following Cowles & Carlin (1996) the convergence of a markovian updating scheme or more-
over the accuracy of the resulting estimates from the joint posterior distribution of interest
strongly depends on the length of the sampling sequence. Some authors already examined the
possibility to use multiple parallel chains and to combine the results. For an overview of the
literature see Cowles & Carlin (1996). In their summarization they point out the ine�ciency
of discarding many initial values from multiple chains for the burn-in-phase and emphasize that
the last iterations of single long chains are likely to be closer to the true distribution than those
reached by any of the shorter chains compare Raftery & Lewis (1992). In order to examine pos-
sible dependencies from initial values or the speci�cation of priors we chose to run multiple long
chains of lengthM = 20000 (m = 1, . . . , l, . . . ,M) with various starting values. The results from
the Gibbs output then have to be examined to determine the length of the necessary burn-in
for values that have to be discarded for more correct estimates (see chapter 5. for details). The
values from the remaining iterations after the burn-in-phase then have to be combined. With the
burn-in length determined at iteration l the Bayes posterior mean vector of unknown parameters

Θ̂i = {β̂, σ̂2u} is then the mean of the remaining values

Θ̂ =
1

M − l

M∑
i=l+1

Θ̂i. (13)

To correctly gauge the relevant e�ects for our probit analysis of participation, the inspection of
marginal e�ects is necessary, too. Following Aÿmann & Boysen-Hogrefe (2011), the marginal
e�ects, evaluated for a particular value of the covariates x∗, which are represented by the mean
of all sample covariates in the case of continuous variables or the mode for binary variables, with
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Θ summarizing all model parameters, is then calculated as

∂

∂x
Pr(y = 1|x = x∗,Θ) (14)

for continuous variables and for binary variables it is given as

(−1)1−x
∗
(Pr(y = 1|x = x∗,Θ)− Pr(y = 1|x = 1− x∗,Θ)). (15)

The speci�ed priors for all parameters can be found in table 3.

3. Empirical data

The two data sets we used for the estimations stem from an organisational reform study of the
National Educational Panel Study (NEPS) - a large panel with more than 150 di�erent single
studies. Among many other topics the NEPS also conducted a study in Thuringia with two waves
in 2010 and 2011 to assess possible e�ects on the competence development of students after an
organisational reform of the �Gymnasiale Oberstufe� in Thuringia. This study was conducted at
32 upper secondary schools for the graduation years 2010 (last year group which is not a�ected
by the reform) and 2011 (�rst reformed year group), where all students of the 12th grade at
the selected schools were tested and questioned one time (provided given consent). To record
possible e�ects of the reform, achievement tests (Fachleistungstests) in the �elds of mathematics,
physics, biology and English, questions about the students' social background, a test on cognitive
abilities as well as questionnaires were applied. In addition, the parents and subject teachers of
the 12th grade were integrated in the survey. In total, 1857 students were asked for participation
in 2010 and 1374 in 2011.
Because of the voluntary nature of this study some students, parents or teachers chose not to
take part. Crucial for the de�nition of the participation status is only the participation of the
students. Although the NEPS made enormous e�orts in order to achieve a high data quality and
especially to get all the requested data, some minor errors occurred. Some schools refused to
follow the detailed instructions regarding the delivery process of the students' marks (complete
marks of students were not available at the time of testing because the school year was not
�nished yet. The marks should be delivered by the school after the �nal exams for all students).
As a consequence, partially missing mark information has been delivered or schools completely
refused to pass on information about students that did not participate in the study. Therefore we
have to deal with a small amount of missing data for the students' marks. Additionally another
type of uncertainty comes into play. The concrete procedure of data privacy protection required
all individual identi�ers (IDs) to be removed for all nonparticipating students from the mark �le
by the school. This partially anonymous data set then has been sent to the NEPS. During the
matching of these data sets it came clear, that some schools failed to exactly record the actual
participation status of their students and therefore in some cases erroneously removed IDs for
participants. In these cases we have to deal with some kind of uncertainty regarding the actual
participation status. How we model these measurement errors will be in more detail explained
in chapter 2..
After these shortcomings of the �rst waves' data delivery procedures were known, they have been
re�ned for the 2nd wave in order to automate as many processes as possible and to obtain an even
higher data quality. The students' marks for the 2nd wave have therefore been automatically
extracted from the school mark software (schools that do not use software for mark management
had to extract the marks manually from the students' �les). The resulting improvement of data
quality and the reduction of missing values can be seen in table 1.
As german students in upper secondary schools have to choose their subjects for the �nal two
years from three di�erent �elds of subjects, we also used this structure to avoid an overspec-
i�cation of our models through the integration of many single mark variables. Therefore we
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calculated mean marks for every student according to the three �elds of subjects. These �elds of
subjects are (1) linguistic-literary-artistic subjects (e.g. german, english, arts, music), (2) social
subjects (e.g. geography, history, religion) and (3) mathematical-natural-scienti�c-technical sub-
jects (e.g. maths, physics, biology, computer sciences). Although the rules of subject choice were
slightly changed from the 1st to the 2nd wave of the study through the reform process, the mean
marks for the students of the 2nd wave were calculated on the basis of the 1st wave structure in
order to maintain comparability between the estimations. Our assumptions is, that the reform
has no causal inference on nonresponse or selectivity and has therefore no e�ect on our analysis.
Further information to be included in the estimation is the sex of the students as well as the
multi-level structure of the students' population. Students being in the same school are exposed
to the same learning environment or context e�ects and tend to make similar decisions. This
structure of dynamic decision making within the class context especially considering the decision
to participate or not in the NEPS study has to be taken into account. Due to little information
on contextual variables in the data sets, we chose to integrate a mean school mark variable into
our estimations to re�ect the hierarchical data structure as good as possible regarding the data
situation. The mean school mark represents the mean of all �nal exam marks of all students
within a school.
In summary, for our estimation we have to deal with a hierarchical data structure and shortcom-
ings of the data delivery processes in terms of measurement error and missing values. To estimate
possible selection e�ects we are in the comfortable situation that additional mark information
is available for respondents as well as for nonrespondents. The used variables in our models are
the actual participation status as the dependent variable and sex, the mean marks in three �elds
of subjects as well as the mean school mark as covariates.

4. Simulation Study

In order to e�ciently assess the accuracy of our estimation routine in di�erent settings a small
simulation study has been set up. As the estimator comprises of various components dealing with
missing values on the one side and measurement errors on the other side, we decided to check
the estimators performance in four di�erent scenarios analogous to the empirical application: (1)
complete cases only (2) with missing values (3) with measurement error and (4) missing values
and measurement error. Therefore we decided to construct 20 arti�cial complete data sets of
size N = 4000 with Nj = 40 students being in J = 100 schools.

Data generating process

The structure of this arti�cial data set should be similar to that of our real data sets. Therefore 3
continuous variables xij = {x1ij ;x2ij ;x3ij} have been sampled from a multivariate truncated normal
distribution MVT N (M,V ), where M equals the means of three variables from the real 2010
data set and V is the corresponding variance-covariance matrix, respectively. The truncation
points are set to the empirically observed minimum and maximum values of the corresponding
variables from the real data set in order to simulate values as similar as possible. Additionally
and in contrast to the original data set 2 binary variables dij = {d1ij ; d2ij} have been simulated,

where d1ij is unconditional on all other variables with

Pr(d1ij = 1) = 0,45. (16)

These values of the �rst binary variable have been arbitrarily set in order to simulate values
similar to the distribution of the sex variable in the real data sets. The second binary variable
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d2ij has been sampled conditional on the continuous variable x1ij according to

Pr(d2ij = 1) = φ(0,9 · x1ij). (17)

Furthermore, for the school level variable xj , 100 values were randomly sampled from x3ij and
were randomly assigned to the schools. The construction of the binary dependent variable zij
of the probit model was done via a linear regression model with arbitrarily chosen parameters
β̃ = {1.5, 0.1, 0.05, 0.20, 0.30,−1.5} providing a latent variable

z∗ij = β̃(1) · const+ β̃(2) · d1ij + β̃(3) · x1ij + β̃(4) · x2ij + β̃(5) · d2ij + β̃(6) · xj + eij + uj (18)

with eij as an individual speci�c standard normal distributed error term and uj as a school level
speci�c error term following a N (0, 0.8). The binary variable zij for the probit model of the
estimation routine is then

zij =

{
1, if z∗ij ≥ 0,

0, if z∗ij < 0.
(19)

As a next step, missing values were randomly generated according to the proportions given for
each scenario in table 4. Whereas the missingness patterns for the variables zij , d

1
ij , d

2
ij and xj

are independent of each other, we decided to sample missing values for the variables x1ij and

x2ij together. Therefore in 8% of all cases, these two variables are both missing. Note that the
missing values applied for scenario 2 are the same as in scenario 4 whereat the measurement error
in scenario 4 is identical to that generated for the scenario 3 data set. Due to computational costs
we only performed Nsims = 20 independent runs with M = 20000 Gibbs iterations for each of
the four scenarios s = 1, . . . , 4 . To check the robustness of these estimates we additionally tested
scenario (1) with Nsim1 = 100 runs. Tables 5 and 6 provide the respective pooled estimates. The
coverage was calculated as

coverage =

Nsims∑
i=1

β̃ ∈ KI[Θ̂]i

Nsims
, (20)

and HDR[Θ̂]i is the 95% high density region of the Bayes posterior means of all parameters of
scenario i. The coverage is therefore the percentage of how often the true parameter values β̃
are covered by the estimated values. By construction it should be around 95% if the estimation
is correct. Furthermore, the overall mean of the means, the standard deviation of the means
and the overall mean of the standard deviation as well as the standard deviation of the standard
deviations have been calculated.

Simulation results

The results from this small simulation study point to the e�ciency of our new estimation and
imputation routine. The coverage for all four scenarios and all single estimates look promising.
Although only 20 runs have been performed, the overall means of the bayesian posterior mean
coe�cients are very close to the true values. With a look at the results from an additional anal-
ysis with 100 runs, which was only performed for scenario (1) (see table 6) due to computational
costs, this impression is even reinforced. Consequently, coverage rates below 90% or slight dif-
ferences between the estimated and the true values seem to be directly attributable to the small
number of performed simulation runs. Another quality criterion is that the standard deviations
of all means and the means of all standard deviations are quite similar.
Therefore, with this small simulation study we have proof of the e�ciency of our estimation and
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imputation routine with respect to the estimated parameters. Our estimator seems to adequately
sample values from the distribution of interest, even if missing values or measurement errors have
occurred. With these �ndings in mind we will now turn to the inspection of the results from the
empirical application with NEPS data.

5. Results

One of the main goals of our work was the estimation of possible selection e�ects based on two
data sets provided by the National Educational Panel Study, where the e�ects of a curricular
reform study have been evaluated for students within grammar schools in Thuringia in 2010
and 2011. First results from a standard probit regression model with complete cases indicate
the presence of selection e�ects as can be seen in the upper part of table 2. It seems that
participation in the study depends signi�cantly on sex and the marks in mathematical-natural-
scienti�c-technical subjects (e.g. maths, physics, biology, computer sciences). Without further
examination of the data the analyst would assume the data to be distorted and the calculation of
nonresponse correcting weights would be necessary. Through the incorporation of the hierarchical
data structure with students being within homogeneous contexts of schools through a standard
bayesian probit model with random e�ects, these �ndings turn out to be misleading. The lower
part of table 2 provides the respective estimates. The consideration of second-level random
e�ects for schools leads to nonsigni�cant estimates regarding the covariates. Assuming the probit
regression with random second level e�ects to be the right model the participation in the NEPS
study is seemingly unrelated to covariates and can be considered as a random process at the
individual level. This conclusion holds for both data sets. The question is whether these results
change through the incorporation of the additional uncertainty stemming from item and unit non
response. In order to answer this question we constructed a new estimation routine consisting of
several steps within a bayesian framework using a Gibbs sampling approach. All missing values
in the participation status as dependent variable and in explaining factors of the binary probit
model have been imputed within each iteration of the approach in order to approximate the
posterior distribution of all parameters and covariates. Plots for the cumulative means can serve
as a visual tool to determine the duration until the Gibbs sampler reaches stability and how
many iterations have to be deleted as a burn-in. Furthermore, the convergence behavior of the
Gibbs sampler can be inspected (see �gure 2). For all parameters the stationary distribution is
reached after 5000 initial iterations. Therefore, further calculations of posterior means, standard
deviations or high density regions (HDR) are based on the last 15000 iterations. The trace plots
for the whole Gibbs sequence (see �gure 3) show a good mixing behavior of our Gibbs estimator
for the whole bandwidth of the distribution. If the sampler would be stuck in certain regions
of the distributions for many successive iterations, then a re�nement of the estimation routine
would be necessary. The iterative nature of Gibbs sampling or markov chains in general also
entails the fact, that successive iterations always depend on the preceding iterations. Therefore
the autocorrelation functions (ACF) for each parameter have to be inspected, too (see �gure 4).
For the individual level the ACF plots for covariates sex and the three mark variables look very
good with only moderate dependencies up to the last 10 iterations. Due to the construction of
the second level random e�ect, a higher dependency can be observed for the intercept as well as
the school level variable mean school mark, as has been expected.
The Bayes posterior means, standard deviations and high density regions of the coe�cients
are given in table 7. Although in many applications especially with long single chain Gibbs
samplers the dependency of the results from speci�ed priors can be neglected Lopes & Tobias
(2011), estimation results stemming from di�erent prior speci�cations (estimates with di�erent
precision for the β priors, where the precision is the reciprocal of the prior variance) are presented,
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too. In our application, the results are independent of the chosen prior speci�cations and do
not change substantially. Nevertheless, for out future work on this topic, further evaluation
of di�erent starting parameters especially regarding the parametrization of the random e�ect
sampling components and di�erent β priors is planned.
The inspection of the bayesian posterior means provides an interesting picture with respect to the
initial results from the standard probit regression without and with random e�ects. Whereas the
standard model based on complete cases could lead to the conclusion that signi�cant selection
e�ects can be observed and the participation probability strongly depends on convariates, no
signi�cant results could be observed anymore for the model with integration of the random
e�ect components to re�ect the hierarchical data structure. For the 2010 data set all of our new
bayesian probit estimations provide nearly identical results. The participation in the NEPS study
is signi�cantly depending on the students' sex. Girls tend to participate at a higher level than
boys, although the marginal e�ect is quite small with about 4% (table 8) in 2010 and 2011. The
fact, that in model (III.2) the e�ect of sex is not signi�cant is considered as a random variation
due the estimation process. This assumption is furthermore supported by the corresponding high
density region, which is including the null.
Thus, these results bring us to the following conclusion. Standard probit regression can be heavily
distorted and lead to the wrong results because so much information is neglected through the
concentration on complete values. Also the structure of the data or the examined population
respectively, has to be taken into account to �nd the �true� model. Furthermore the integration
of uncertainty due to the missing data within bayesian estimation routines is extremely important
to get estimates that are close to reality. Of course, the validity of these results and our new
estimation routine in general will in detail be tested in our future work.

6. Summary

This paper focuses on bayesian estimation of binary probit models with measurement error in the
dependent variable and missing values in model covariates. Our starting point for this kind of
analysis was an analysis of possible selection e�ects in data sets from a curricular reform study of
the National Educational Panel Study in grammar schools in Thuringia in 2010 and 2011. These
data sets provide detailed information on all marks of the two graduation years for participating
students and nonparticipating students as well and are therefore well suitable for a sophisticated
analysis of participation rates.
We set up a binary probit model for the estimation of participation in the NEPS study with
some covariates. A bayesian approach was chosen in order to explicitly include uncertainty due
to missing values in model covariates and measurement error in the dependent variable. For the
imputation of missing values in model covariates we adapted the Classi�cation and Regression
Tree imputation approach from Burgette & Reiter (2010) for the hierarchical sampling structure
of the NEPS data set. A Metropolis-Hastings updating procedure (Chib & Greenberg, 1995)
was used to sample possible candidates for missing values in the actual participation status
stemming from measurement error in the data collection. A Gibbs sampling approach then
allows to simulate draws from the posterior distribution of interest via iterative sampling from
the full conditional distributions of all model parameters conditional on the data. A small
simulation study was performed in order to check the estimators e�ciency in terms of correct
parameter estimation with missing information. Therefore we divided the estimation routine into
its single components and tested them in four di�erent scenarios with 20 runs each. Furthermore,
sensitivity checks have been performed with the empirical data in order to assess estimation
stability and the dependence from prior assumptions. In this paper we only varied the precision
of the coe�cient prior, but further analysis on this topic as well as a more extensive simulation
study on model stability and estimation precision is already planned for future work. This new
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estimation and imputation routine can naturally be extended from the binary to the multinomial
probit regression case and is therefore �exible enough to answer a lot of analytical questions.
With a few adaptations it is also suitable to the imputation of even more complex data situations
including �lter questions or Rasch scaled competence scores.
The empirical illustration is based on the NEPS data sets. It has been shown that the inclusion of
additional information from partially missing data, that would completely be ignored in standard
probit regression models based on complete cases (cc) leads to reasonable results regarding the
model coe�cients. Participation in the NEPS study is signi�cantly dependent from the students
gender as girls tend to participate at a higher level than boys. These results, especially in
contrast to results from complete case analysis, highlight the importance to include all available
information into the model to avoid incorrect model speci�cations and wrong conclusions.
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Appendix

Table 1: Overview of missing values

nr. variable percent of missings
2010 2011

1 participation status 1.3 % 0.4 %
2 sex 3.8 % 2.4 %
3 �eld of subjects 1 11.9 % 5.0 %
4 �eld of subjects 2 12.0 % 5.0 %
5 �eld of subjects 3 12.1 % 5.0 %
6 mean school mark 1.0 % 0.0 %

complete cases 85.0 % 93.6 %
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Table 2: Comparison of a standard probit model without and with random e�ects
2010 2011

Standard Probit regression (complete cases: N=1578) Standard Probit regression (complete cases: N=1304)
Estimate Std. Error 95% CI Estimate Std. Error 95% CI

Intercept 2.2685 0.5812 1.1482 3.4018 0.7200 0.6150 -0.4892 1.9320
sex -0.1349 0.0763 -0.2842 0.0143 -0.2325 0.0832 -0.3963 -0.0689
fs1 -0.0703 0.0318 -0.1324 -0.0084 -0.0127 0.0340 -0.0792 0.0538
fs2 0.0217 0.0285 -0.0340 0.0773 -0.0141 0.0302 -0.0729 0.0447
fs3 0.0496 0.0211 0.0083 0.0909 0.0468 0.0217 0.0057 0.0879
msm -0.6324 0.2181 -1.0550 -0.2166 -0.1672 0.2336 -0.6293 0.2934

Bayes Probit incl random e�ects (complete cases) Bayes Probit incl random e�ects (complete cases)
Estimate Std. Error 95% HDR Estimate Std. Error 95% HDR

Intercept 1.9000 1.7080 -1.4816 5.2895 -0.8209 2.8212 -6.4948 4.6262
sex -0.1321 0.0856 -0.2997 0.0366 -0.1885 0.1001 -0.3860 0.0070
fs1 -0.0671 0.0372 -0.1393 0.0065 0.0336 0.0428 -0.0507 0.1165
fs2 0.0280 0.0332 -0.0370 0.0922 -0.0109 0.0392 -0.0864 0.0654
fs3 0.0390 0.0234 -0.0073 0.0843 0.0022 0.0257 -0.0484 0.0526
msm -0.3698 0.7374 -1.8310 1.1034 0.6009 1.2724 -1.8854 3.0999
σ2
u 0.6037 0.2326 0.2920 1.1836 1.2770 0.4139 0.6874 2.2772

17



Table 3: Prior distributions

Parameter Distribution Mean Variance

βi N 0 100
uj N 0 0,5
σ2
u IG 1 1
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Table 4: Proportions of missing values

variable scenario (1) scenario (2) scenario (3) scenario (4)

zij complete complete 2 % 2 %
d1ij complete 5 % complete 5 %

x1ij and x2ij complete 8 % complete 8 %

x1ij complete 2 % complete 2 %

x2ij complete 2 % complete 2 %

d2ij complete 20 % complete 20 %

xj complete 2.5 % complete 2.5 %

19



Table 5: Probit regression coe�cients for di�erent scenarios of the simulation study
Scenario (1): complete cases (Nsim = 20)
Var true value coverage meanm sdm meansd sdsd
Intercept 1.50 0.95 1.9991 1.0333 1.2242 0.1078
d1ij 0.10 0.85 0.0945 0.0669 0.0508 0.0009

x1ij 0.05 0.90 0.0498 0.0290 0.0223 0.0006

x2ij 0.20 1.00 0.2052 0.0196 0.0200 0.0006

d2ij 0.30 0.95 0.2975 0.0675 0.0631 0.0011

xj -1.50 0.95 -1.7423 0.5056 0.5377 0.0474
σ2
u 0.64 0.90 0.6953 0.1225 0.1284 0.0241

Scenario (2): missing values (Nsim = 20)
Var true value coverage meanm sdm meansd sdsd
Intercept 1.50 0.95 1.7060 0.9255 1.1589 0.0904
d1ij 0.10 0.85 0.0912 0.0662 0.0512 0.0010

x1ij 0.05 0.85 0.0458 0.0290 0.0227 0.0005

x2ij 0.20 0.95 0.1973 0.0190 0.0204 0.0005

d2ij 0.30 0.95 0.2541 0.0713 0.0656 0.0013

xj -1.50 0.95 -1.5481 0.4438 0.5077 0.0384
σ2
u 0.64 0.90 0.6783 0.1170 0.1219 0.0182

Scenario (3): measurement error (Nsim = 20)
Var true value coverage meanm sdm meansd sdsd
Intercept 1.50 0.95 1.8916 1.0626 1.1739 0.1071
d1ij 0.10 0.80 0.0870 0.0701 0.0504 0.0011

x1ij 0.05 0.80 0.0487 0.0314 0.0226 0.0007

x2ij 0.20 0.85 0.1878 0.0417 0.0203 0.0007

d2ij 0.30 0.95 0.2814 0.0734 0.0639 0.0014

xj -1.50 0.95 -1.6260 0.5385 0.5148 0.0465
σ2
u 0.64 1.00 0.6012 0.1000 0.1139 0.0353

Scenario (4): missing values and measurement error (Nsim = 20)
Var true value coverage meanm sdm meansd sdsd
Intercept 1.50 0.9167 1.9084 1.0882 1.1104 0.1002
d1ij 0.10 0.9167 0.0929 0.0590 0.0513 0.0009

x1ij 0.05 0.8333 0.0382 0.0316 0.0232 0.0006

x2ij 0.20 0.9167 0.1905 0.0203 0.0208 0.0005

d2ij 0.30 0.8333 0.2305 0.0636 0.0668 0.0016

xj -1.50 0.9167 -1.5922 0.5287 0.4858 0.0431
σ2
u 0.64 1.0000 0.6025 0.0829 0.1059 0.0156
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Table 6: Robustness check for scenario (1) of the simulation study

Scenario (1): complete cases (Nsim = 100)
Var true value coverage meanm sdm meansd sdsd
Intercept 1.50 0.97 1.5535 1.1984 1.2413 0.1356
d1ij 0.10 0.94 0.0987 0.0530 0.0505 0.0012

x1ij 0.05 0.99 0.0497 0.0183 0.0222 0.0006

x2ij 0.20 1.00 0.2006 0.0176 0.0199 0.0005

d2ij 0.30 0.93 0.3097 0.0660 0.0627 0.0017

xj -1.50 0.97 -1.5236 0.5177 0.5451 0.0595
σ2u 0.64 0.94 0.6669 0.1146 0.1222 0.0254
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Table 7: Bayesian Probit estimation with di�erent prior precision
2010 2011

(I.1) Gibbs Cart MH P = 0.01 (I.2) Gibbs Cart MH P = 0.01
Estimate Std. Error 95% HDR Estimate Std. Error 95% HDR

Intercept 1.2011 1.3131 -1.3491 3.7941 -0.8278 2.5411 -5.9724 4.1328
sex -0.1528 0.0749 -0.2975 -0.0058 -0.1912 0.0962 -0.3791 -0.0017
fs1 -0.0582 0.0339 -0.1247 0.0079 0.0286 0.0410 -0.0504 0.1087
fs2 0.0193 0.0309 -0.0417 0.0801 -0.0098 0.0374 -0.0840 0.0622
fs3 0.0387 0.0218 -0.0046 0.0811 0.0105 0.0253 -0.0393 0.0598
msm -0.1603 0.5586 -1.2717 0.9051 0.5588 1.1597 -1.7002 2.9225
σ2
u 0.3867 0.1156 0.2195 0.6673 1.1512 0.3549 0.6373 2.0165

(II.1) Gibbs Cart MH P = 0.02 (II.2) Gibbs Cart MH P = 0.02
Estimate Std. Error 95% HDR Estimate Std. Error 95% HDR

Intercept 1.1325 1.2841 -1.3911 3.7243 -0.6130 2.5406 -5.6655 4.1640
sex -0.1530 0.0754 -0.3025 -0.0070 -0.1925 0.0980 -0.3863 -0.0002
fs1 -0.0568 0.0336 -0.1226 0.0090 0.0287 0.0412 -0.0525 0.1098
fs2 0.0178 0.0303 -0.0411 0.0774 -0.0115 0.0376 -0.0845 0.0624
fs3 0.0394 0.0218 -0.0033 0.0820 0.0105 0.0252 -0.0395 0.0596
msm -0.1318 0.5503 -1.2348 0.9443 0.4624 1.1531 -1.7344 2.7384
σ2
u 0.3890 0.4201 0.2153 0.6604 1.1531 0.3555 0.6338 2.0121

(III.1) Gibbs Cart MH P = 0.05 (III.2) Gibbs Cart MH P = 0.05
Estimate Std. Error 95% HDR Estimate Std. Error 95% HDR

Intercept 1.2086 1.3278 -1.3657 3.8252 -0.5243 2.4254 -5.2583 4.3361
sex -0.1509 0.0755 -0.2990 -0.0035 -0.1901 0.0988 -0.3845 0.0028
fs1 -0.0570 0.0338 -0.1233 0.0098 0.0290 0.0409 -0.0514 0.1083
fs2 0.0183 0.0306 -0.0412 0.0785 -0.0107 0.0374 -0.0844 0.0631
fs3 0.0389 0.0216 -0.0034 0.0807 0.0098 0.0252 -0.0401 0.0587
msm -0.1665 0.5649 -1.2735 0.9383 0.4320 1.0963 -1.7518 2.5616
σ2
u 0.3867 0.1373 0.2167 0.6627 1.1523 0.3572 0.6388 2.0180

Note: Initial 5000 draws were discarded for burn-in
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Table 8: Marginal e�ects of the Bayesian Probit estimation with di�erent prior precision
2010 2011

(I.1) Gibbs Cart MH P = 0.01 (I.2) Gibbs Cart MH P = 0.01
Estimate Std. Error 95% HDR Estimate Std. Error 95% HDR

Intercept 0.3180 0.3462 -0.3587 0.9947 -0.1926 0.5988 -1.3899 0.9858
sex -0.0426 0.0209 -0.0830 -0.0016 -0.0472 0.0238 -0.0936 -0.0004
fb1 -0.0154 0.0089 -0.0329 0.0021 0.0069 0.0098 -0.0118 0.0264
fb2 0.0051 0.0082 -0.0110 0.0212 -0.0024 0.0089 -0.0201 0.0147
fb3 0.0103 0.0058 -0.0012 0.0214 0.0025 0.0060 -0.0094 0.0141
msm -0.0425 0.1476 -0.3356 0.2396 0.1304 0.2727 -0.4065 0.6803
(II.1) Gibbs Cart MH P = 0.02 (II.2) Gibbs Cart MH P = 0.02

Estimate Std. Error 95% HDR Estimate Std. Error 95% HDR
Intercept 0.3005 0.3399 -0.3721 0.9807 -0.1420 0.5981 -1.3144 0.9957
sex -0.0427 0.0210 -0.0843 -0.0020 -0.0475 0.0242 -0.0955 -0.0001
fb1 -0.0151 0.0088 -0.0322 0.0024 0.0069 0.0098 -0.0122 0.0266
fb2 0.0047 0.0081 -0.0110 0.0206 -0.0028 0.0089 -0.0201 0.0147
fb3 0.0105 0.0058 -0.0009 0.0217 0.0025 0.0060 -0.0093 0.0141
msm -0.0351 0.1459 -0.3267 0.2510 0.1078 0.2710 -0.4148 0.6345
(III.1) Gibbs Cart MH P = 0.05 (III.2) Gibbs Cart MH P = 0.05

Estimate Std. Error 95% HDR Estimate Std. Error 95% HDR
Intercept 0.3206 0.3513 -0.3640 1.0114 -0.1219 0.5709 -1.2220 1.0239
sex -0.0421 0.0210 -0.0832 -0.0010 -0.0470 0.0244 -0.0954 0.0007
fb1 -0.0151 0.0089 -0.0324 0.0027 0.0070 0.0098 -0.0120 0.0264
fb2 0.0049 0.0081 -0.0110 0.0210 -0.0026 0.0089 -0.0202 0.0149
fb3 0.0103 0.0057 -0.0009 0.0214 0.0023 0.0060 -0.0097 0.0139
msm -0.0442 0.1498 -0.3362 0.2473 0.1010 0.2575 -0.4175 0.5945

Note: Initial 5000 draws were discarded for burn-in
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Figure 1: Data situation
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Figure 2: Convergence of the means
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Note: Estimations are based on 20000 Gibbs iterations, where initial 5000 draws were discarded for burn-in.
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Figure 3: Draws from the Gibbs sampler
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Note: Estimations are based on 20000 Gibbs iterations, where initial 5000 draws were discarded for burn-in.
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Figure 4: Plots of the autocorrelation functions (ACF)
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