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Competencies as Dependent Variables in Regression Models

Abstract

This paper considers methods to define dependent variables representing results of competence
tests; as an example I refer to NEPS data on math competencies of 5th grade pupils. The
simplest and easily comprehensible method is to use the number of correct responses in a com-
petence test as values of a quantitative dependent variable in a regression model. Instead of
simply using the number of correct responses one can define weighted versions which could take
into account that items might have different importance for the competence that the test is
intended to measure. However, I show that it is easily misleading to think of such weights as
‘item difficulties’ which can be derived from proportions of wrong responses.

Instead of using these simple approaches to the construction of a dependent variable, one can
start from a probabilistic framework. As an example, I consider a Rasch model that allows
one to construct a variable representing latent competencies which can subsequently be used as
a dependent variable in regression models. I argue that this approach has two disadvantages,
compared with using a simple summary index. The Rasch model introduces a nonlinear metric
which is difficult to understand and therefore makes it difficult to interpret effects of explanatory
variables. Moreover, the Rasch model employs a notion of ‘item difficulties’ which are derived
from the distribution of competencies of the persons participating in the test.

I then discuss the proposal to use so-called plausible values for the construction of dependent
variables. I distinguish between versions with and without conditioning variables. I show that
using plausible values, when derived from models including conditioning variables, entail strik-
ing forms of statistical discrimination, and propose that this approach should not be used for
sociological analyses.

Finally, I briefly consider models which avoid a reference to latent competencies and instead
directly relate the observable response patterns to values of explanatory variables. While at-
tractive at first sight, this approach has the drawback that such models must be supplemented
by a procedure for aggregating item-specific probabilities.

Keywords

Competence data, scaling methods, overt and latent competencies, Rasch models, unobserved
heterogeneity
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1. Introduction

The National Educational Panel Study (NEPS) collects a large amount of statistical data on the
development of competencies across the life course. These data can be used for many different
research questions. This paper takes a sociological view which, for the present work, I demarcate
by two ideas.

First, the main interest concerns people’s living conditions (understood in a broad sense). With
respect to competencies, this leads to two complementary questions: (a) How do people’s living
conditions contribute to the development of their competencies? (b) How do people’s compe-
tencies contribute to the development of their living conditions? In this paper, I discuss some
possibilities for approaching the first of these questions with statistical data and methods. The
focus is on how to construct variables representing people’s competencies that can be used as
dependent variables in regression analyses.

In discussing this question, I presuppose a second connotation of the sociological view: One
is not interested in the characterization of individual persons, but refers to groups of people
defined by social categories. Of course, at the beginning the data relate to individual persons.
This is true, in particular, for competence data which result from testing individual persons
with competence tests. Since such tests consist of several items (questions or tasks), there is an
aggregation problem already on the individual level. Explicitly, I refer to a test consisting of m
items and assume that n persons participate in the test; xij denotes the response of person i to
item j. To simplify the notations, I assume that there are only two possible responses: xij = 1
if the response is correct and otherwise xij = 0. So there are m responses, xi1, . . . , xim, for
each person i. These item-specific responses must be aggregated in some way in order to get an
overall test result that can be interpreted as indicating a person’s competence (in the domain
to which the test relates).

However, the goal is not to predict the individual competencies of persons who participated in
the NEPS competence tests. Instead, in statistical parlance, the interest concerns conditional
distributions of competencies. The task is to compare such distributions and to find variables
which can contribute to an explanation of differences.

It follows that the aggregation of item-specific responses should be done in such a way that the
derived overall test results can be used as values of a dependent variable in regression models.
There are basically two possibilities: (1) A two-step procedure. In a first step, based on the item-
specific responses, one constructs a single variable representing the overall test result. Then,
in a second step, this variable is used to compare groups of persons or, more general, as a
dependent variable in a regression model. (2) One uses regression models which directly relate
to the item-specific responses, and possibly adds an aggregation procedure afterwards.

I discuss both possibilities. In Section 2, I consider simple index constructions which do not
presuppose a probabilistic model, and I show how such indices can immediately be used as
dependent variables in regression models.

In Section 3, I begin with discussing the idea to use a probabilistic framework for the representa-
tion of competencies. I distinguish two versions. In one version, it is assumed that probabilities
of correct responses directly reflect competencies. In another version, one assumes that compe-
tencies should be conceptualized in terms of latent variables which in some sense ‘explain’ the
probabilities of correct responses. This is further discussed in Section 4 where a Rasch model is
used to construct a dependent variable for further regression analyses.

In Section 5, I discuss the proposal to use so-called plausible values for the construction of
dependent variables of regression analyses. I begin with discussing the interpretation of plausible
values. I then show that using plausible values, when derived from models including conditioning
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Table 1.1 Valid answers and missing values in 23 items for
math competencies.

Item Variable -97 -95 -94 0 1

X1 MAG5D041 66 17 14 2166 2945
X2 MAG5Q291 232 43 14 1442 3477
X3 MAG5Q292 256 37 14 1645 3256
X4 MAG5V271 436 4 14 3264 1490
X5 MAG5R171 179 11 16 2411 2591
X6 MAG5Q231 609 291 16 2515 1777
X7 MAG5Q301 116 93 16 3065 1918
X8 MAG5Q221 154 30 17 864 4143
X9 MAG5D051 84 4 17 562 4541
X10 MAG5D052 81 127 17 1986 2997
X11 MAG5Q14S 584 127 18 1553 2926
X12 MAG5Q121 431 10 21 3695 1051
X13 MAG5R101 130 69 23 2366 2620
X14 MAG5R201 115 6 28 1352 3707
X15 MAG5Q131 237 67 38 1131 3735
X16 MAG5D02S 318 154 46 656 4034
X17 MAG5D023 374 45 53 1923 2813
X18 MAG5V024 727 228 67 1920 2266
X19 MAG5R251 360 13 98 2571 2166
X20 MAG5V321 548 58 205 2997 1400
X21 MAG5V071 70 29 223 501 4385
X22 MAG5R191 47 217 284 2057 2603
X23 MAG5V091 0 23 465 2669 2051

variables, entails striking forms of statistical discrimination, and propose that this approach
should not be used for sociological analyses.

Finally, in Section 6, I briefly consider models that avoid a reference to latent competencies and
instead directly relate the observable response patterns to values of explanatory variables.

The paper ends with a short summary of the conclusions.

Illustrations with NEPS data

To illustrate the discussion, I use NEPS data on math competencies of 5th grade pupils.1 I use
the data file SC3 xTargetCompetencies D 1-0-0.sav that is part of the SPSS version of the
SC3 SUF.2 The file contains information about 5208 pupils who participated in the competence
tests. There are 24 items for math competencies. I use 23 of these items which are binary. Table
1.1 shows the distribution of their values.

There are three types of missing values: -97 (refused), -95 (implausible value), and -94 (not
reached). I treat all three types equally as missing values. The following table shows the

1Acknowledgement: This paper uses data from the National Educational Panel Study (NEPS): Starting Cohort
3 – 5th grade (From Lower to Secondary School), doi:10.5157/NEPS:SC3:1.0.0. The NEPS data collection is
part of the Framework Programme for the Promotion of Empirical Educational Research, funded by the German
Federal Ministry of Education and Research and supported by the Federal States. For a general introduction to
the NEPS, see Blossfeld, Roßbach and von Maurice (eds.) 2012.
2For a description of the SC3 SUF, see Skopek, Pink and Bela (2012). Additional information about the
mathematics test is given by Duchhardt and Gerdes (2012).
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distribution of missing values (M is the number of missing values, N the number of persons).

M N M N M N M N M N M N M N

0 2076 3 405 6 142 9 35 12 14 15 7 19 1
1 1131 4 298 7 104 10 32 13 10 16 1 21 1
2 644 5 223 8 50 11 14 14 4 17 2 23 14

In this paper, I treat all missing answers as wrong answers, that is, negative values of response
variables are substituted by zeros.3

In addition to the test results, I use a binary variable Z (0 for girls, 1 for boys) to illustrate the
comparison of competencies between groups of persons. For 5144 of the 5208 pupils who partici-
pated in the math test one can find a valid value of Z in the data file SC3 xTarget D 1-0-0.sav.
5130 of these pupils (2649 boys, 2481 girls) have a valid response to at least one test item. This
is the number of cases that is used in all illustrations in the present paper: n = 5130, m = 23.

2. Nonprobabilistic index constructions

In this section, I consider index constructions which do not presuppose a probabilistic model.

2.1 A simple additive index

A simple index is based on counting the number of correct responses. Denoting the variable by
S, its value for person i is

si :=
m
∑

j=1

I[xij = 1] (1)

m denotes the number of items, I[. . .] is the indicator function. An index that uses the proportion
of correctly answered items can be defined by S∗ := S/m. Mean values of S are 13.23 for boys
and 11.77 for girls. The distributions are shown in Figure 2.1.

2.2 Regression models

The variable S (or S∗) can immediately be used as the dependent variable in a regression
model. The basic idea is to think of the distribution of S as being dependent on values of
explanatory variables. Assuming p explanatory variables, say Z1, . . . , Zp, one considers the
conditional probabilities Pr(S = s | Z1 = z1, . . . , Zp = zp).

4 Such models correspond to the
second connotation of a sociological view mentioned at the beginning: They are not concerned
with the characterization of individuals but are tools for investigating how the distribution of a
dependent variable depends on values of other (explanatory) variables.

Actually, most often one ignores the form of the distribution, and regression models only relate
to conditional mean values (expectations). Parametric regression models then have the general
form

E(S | Z1 = z1, . . . , Zp = zp) ≈ h(z1, . . . , zp;β)

3For further discussion of missing answers in competence tests see Rohwer (2013).
4These probabilities are posited by the regression model; the variable S was constructed without a probabilistic
framework.
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Fig. 2.1 Frequency distributions of S∗ (proportion of correct answers) for
boys (solid) and girls (dashed).

where h is a parametric function of the explanatory variables that contains a parameter vector β
to be estimated from the data. In particular, a simple linear regression model without interaction
terms could be written as

E(S | Z1 = z1, . . . , Zp = zp) ≈ α+ z1β1 + · · · + zpβp

To illustrate, I use the data on math competencies with a single explanatory variable, Z (= 0
for girls and = 1 for boys). For this application, a simple linear model

E(S | Z = z) ≈ α+ zβ (2)

suffices. Using OLS estimation, one gets the parameter values α̂ = 11.77 and β̂ = 1.46, which
correspond to the mean values mentioned in Section 2.1.

2.3 Weighting with item difficulties?

The index S (or S∗) can be criticized with the argument that it takes all items as equally
difficult. The argument suggests to think about a more refined index that takes item difficulties
into account. Assume that one has available values d1, . . . , dm indicating the difficulty of the
test items. One can then define a weighted version of S∗, say Sw, having values

swi :=

∑m
j=1 I[xij = 1] dj

∑m
j=1 dj

(3)

Of course, this index requires a foregoing definition of item difficulties. There are basically two
possibilities.

One method is based on the expert knowledge of the persons who created the test items. The
argument is simple: These persons are responsible for selecting more or less difficult test items,
and therefore should provide indicators of the difficulty of the actually chosen items. In fact,
since ‘competence’ and ‘difficulty’ are complementary notions, it would be better to speak of
‘importance’ instead of ‘difficulty’: Each item should be given a weight indicating the impor-
tance of the item as part of the overall competence that the test is intended to measure. Of
course, formulations of the test items and proposed values of their importance should be publicly
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0

0.5

1

Fig. 2.2 Values of dj (proportion of not correct answers) for items
j = 1, . . . , 23, for boys (solid) and girls (dashed).

accessible, including the participants of the tests. This entails that such values must be fixed in
advance.

A quite different method uses observed responses to assess the difficulty of test items. In the
present nonprobabilistic framework, one could use the proportion of wrong answers:

dj :=
1

n

n
∑

i=1

I[xij = 0] (4)

n being the number of respondents. Values for boys and girls are shown in Figure 2.2.

While the definition of item difficulties according to (4) seems sensible, on first sight, it actually
creates an essential problem: The approach makes item difficulties dependent on respondents’
competencies, and vice versa. To illustrate the problem, consider the following example with
four items and five persons:

X′ =













1 0 0 0
1 1 0 0
1 1 1 0
1 0 1 1
0 0 1 1













X′′ =













1 0 0 0
1 1 1 0
1 1 1 0
1 0 1 1
0 1 1 1













The same test is done at the beginning (X′) and at the end (X′′) of a class. Persons 1, 3 and
4 performed equal at both times, persons 2 and 5 performed better at the end of the class.
So one would conclude that the competencies of persons 1, 3 and 4 did not change, and the
competencies of persons 2 and 5 increased. However, if one uses the definition (4), the increased
competencies of persons 2 and 5 lead to a change in item difficulties:

Item difficulty 1 2 3 4

at the beginning 0.2 0.6 0.4 0.6
at the end 0.2 0.4 0.2 0.6

and the values of Sw change as follows:

Person 1 2 3 4 5

at the beginning 0.11 0.44 0.67 0.67 .55
at the end 0.14 0.57 0.57 0.71 .86
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While there is no change in the response patterns of persons 1, 3 and 4, the index Sw suggests
that the competence of person 3 has decreased and the competencies of persons 1 and 4 have
increased.

The example shows that using item difficulties derived from frequencies of wrong (or correct)
answers makes the measure of competence in a problematic way dependent on the distribution
of competencies in the group of persons that participated in the test (or belong to a reference
sample).5 If one intends an objective measure, it should be defined by a procedure that is
independent of the actual competencies of the persons participating in a competence test. This
would be the case if item difficulties are defined in advance as a fixed part of the test.

3. Using a probabilistic framework

In this section, I begin with discussing the idea to use a probabilistic framework for the repre-
sentation of competencies. Corresponding models will be considered in subsequent sections.

Consider the response to a single test item, say Xj . Conceiving of Xj as a random variable,
one can think of the probability that Xj takes the value 1, formally: Pr(Xj = 1). In order to
understand this probability, one has to refer to a person whose probability for giving a correct
answer to the jth item is Pr(Xj=1). Of course, this probability can well be different for different
persons, and one therefore should in some way characterize the person to which the probability
relates. I use again Z to denote the variable whose value characterizes the referenced person.
The basic expression then becomes

Pr(Xj=1 | Z=z) (5)

to be understood as the probability that a person characterized by the value z of the variable
Z will give a correct response to item j.

Note that in this set-up Z is a variable, and this entails that the probability (5) refers to a
generic person, that is, a person who is characterized only by a value of Z. This corresponds
to the second connotation of a sociological view mentioned in the introduction. Of course, Z
can consist of several components. For example, Z = z could mean a person being a female 5th
grade pupil in a specified type of school.6

Starting from (5) not only provides an interpretation of the probabilities for giving correct
answers but also gives these probabilities an operational meaning: Pr(Xj = 1 | Z = z) can be
estimated by a proportion of persons, in a sample demarcated by Z = z, who can answer the
jth item correctly.

Now, given this probabilistic set-up, there are basically two different possibilities for the defini-
tion of quantitative measures of competence.

a) One can directly use Pr(Xj=1 | Z=z) as a quantitative measure of the competence (to give
correct answers to item j) of a person specified by Z = z.

b) One can attempt to construct a latent variable behind the item-specific probabilities in such
a way that its values can be interpreted as measures of competence.

In the remainder of this section I briefly consider the first approach which is concerned with

5For further discussion of distribution-dependent index constructions see Rohwer & Pötter 2002: 71f.
6Note also that in this set-up Z is not a random variable, but is only used to formulate a condition that is
required for making the probability intelligible. To think of a distribution of Z would require the reference to a
specified sample or population, entailing that it would be a frequency distribution, not a probability distribution;
or alternatively, one would need to specify a random mechanism that generates values of Z.
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‘overt competencies’. Beginning with considering the items separately, one can think of

Yj(z) := Pr(Xj=1 | Z=z) (6)

as a measure of the competence for giving a correct response to item j. When referring to all
m items, one can use the vector

Y (z) := (Y1(z), . . . , Ym(z)) (7)

Note that (6) and (7) are definitions. They do not presuppose, or entail, the independence
assumption

Pr(X1=x1, . . . ,Xm=xm | Z=z) ≈

m
∏

j=1

Pr(Xj=xj | Z=z) (8)

In general, this assumption will not be true. Nevertheless, it is well possible to aggregate the
components of the vector Y (z) into a single measure of competence. One can use, for example,
an index

Y ∗(z) :=
1

m

m
∑

j=1

Pr(Xj=1 | Z=z) (9)

which can be interpreted as a mean probability of correct responses. As defined, the index treats
all items as equally important for an assessment of competencies. Instead, one could use varying
weights representing the importance of the items.

4. Competencies derived from a Rasch model

A widespread probabilistic framework for competencies is the Rasch model. In this section I
consider using this model for a two-step procedure: In a first step the model is used to construct
a variable representing latent competencies which, in a second step, is used as the dependent
variable of a regression model.

4.1 Description of the Rasch model

I interpret the Rasch model as a measurement model providing the second part of a measurement
procedure. The first part consists in a method for generating the data that are relevant for the
quantity to be measured; in the present context this is the test that generates a person’s observed
scores. The measurement model then specifies how to use these data for the calculation of the
final measure. Given this understanding, the Rasch model aims to construct, for each person i,
a value θi that can be interpreted as a quantitative measure of the competence that corresponds
to her observed test result (xi1, . . . , xim). In the standard Rasch model θi is a scalar quantity.
The basic idea is to consider the test results as values of random variables, X1, . . . ,Xm, whose
joint distribution depends on model parameters, formally:

Pr(X1=xi1, . . . ,Xm=xim; θi, δ) (10)

In addition to θi, there is a vector of item parameters: δ := (δ1, . . . , δm).

The Rasch model is a specific version of (10) which results from assuming (a) conditional inde-
pendence, and (b) a specific parametric form:

Pr(X1=xi1, . . . ,Xm=xim; θi, δ) =
m
∏

j=1

exp(θi − δj)
xij

1 + exp(θi − δj)
(11)
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Given this model, the likelihood of data (xi1, . . . , xim), for persons i = 1, . . . , n, is

L(δ, θ) =
n
∏

i=1

m
∏

j=1

exp(θi − δj)
xij

1 + exp(θi − δj)

The first-order conditions for maximizing this likelihood entail

m
∑

j=1

exp(θi − δj)

1 + exp(θi − δj)
= si (12)

where si =
∑

j xij is the sum score of person i. This equation has two important implications.
First, all persons having the same number of correctly answered items (= belong to the same
‘score group’) get the same value of θi. So one can simply refer to a mapping s 7→ θ(s) where
θ(s) = θi iff s = si. Second, one cannot calculate values of θi for persons having all answers
wrong, or all answers right. This implication can be avoided by using weighted maximum
likelihood estimates; this will be discussed in Section 4.2.

In order to find estimates of the model parameters one can proceed in two steps. In a first
step, one estimates the item parameters, in a second step one calculates values of θi. In order
to perform the first step without the need to use values of θi, one begins with a conditional
likelihood which, for person i, is defined by

Lcon
i (δ) := Pr(X1=xi1, . . . ,Xm=xim | S = si; θi, δ)

The additional conditioning is done with values of the variable S, the total number of correctly
answered items. Now define

Ds := {x=(x1, . . . , xm) | xj ∈ {0, 1},Σjxj=s}

Each set Ds contains all response patterns where the total number of correctly answered items
is s. This allows one to derive (see, e.g., Rohwer & Pötter 2002: 286)

Lcon
i (δ) =

exp(−
∑

j=1,m δj xij)
∑

x∈Dsi

∏

j=1,m exp(−δj xj)

It follows that one can find estimates of δ1, . . . , δm by maximizing the conditional likelihood

Lcon(δ) =
n
∏

i=1

Lcon
i (δ)

without the need to use values of θi. Then, having found estimates δ̂j , one can calculate values
of θi by solving equation (12).

To illustrate this procedure, I use the NEPS data on math competencies and treat all missing
answers as wrong answers. In order to find estimates of the item parameters, I use the constraint
∑

j δj = 0. The estimated values are shown in Table 4.1. These values mainly reflect the item
difficulties dj as defined in (4); this is illustrated in Figure 4.1 (the linear correlation is 0.9975).

Competence values are calculated by solving equation (12). Results are shown in Table 4.2. For
each score group s, the table shows the corresponding value of θ(s). The table also shows the
number of corresponding response patterns and the number of persons. The total number of
persons in the table is 5130. Of these, 5 persons have all items wrong (s = 0), and 21 persons
have all items right (s = 23).
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Table 4.1 Estimated item parameters.

j δ̂j j δ̂j j δ̂j j δ̂j

1 −0.0746 7 0.9171 13 0.2335 19 0.6635
2 −0.6122 8 −1.4015 14 −0.8605 20 1.4687
3 −0.3819 9 −2.0642 15 −0.8990 21 −1.7771
4 1.3648 10 −0.1276 16 −1.2706 22 0.2460
5 0.2624 11 −0.0591 17 0.0488 23 0.7810
6 1.0604 12 1.9161 18 0.5661

0 0.5 1
-2

-1

0

1

2

dj

δ̂j

Fig. 4.1 Relationship between dj as defined in (4) and the item

parameters δ̂j in Table 4.1.

Table 4.2 Estimated values of θ(s) for score groups s = 1, . . . , 22.

s patterns persons θ(s) s patterns persons θ(s)

0 1 5 12 373 376 0.12
1 10 17 −3.57 13 371 376 0.34
2 34 41 −2.77 14 409 415 0.56
3 72 84 −2.27 15 324 328 0.78
4 117 124 −1.88 16 361 363 1.02
5 147 154 −1.55 17 340 349 1.27
6 198 201 −1.26 18 251 273 1.55
7 241 246 −1.00 19 182 208 1.87
8 253 257 −0.76 20 119 153 2.25
9 290 291 −0.53 21 68 103 2.74

10 329 332 −0.31 22 19 65 3.52
11 346 348 −0.09 23 1 21

4.2 Weighted ML estimation

When using (12), one gets maximum likelihood estimates of values of θi. An alternative, so-
called weighted maximum likelihood estimates (WLE), was proposed by Warm (1989). Since
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Fig. 4.2 MLE (solid) and WLE (dashed) estimates of θ(s) for score groups
s = 0, . . . , 23.

these are often used,7 I briefly describe the calculation.

Warm’s proposal concerns the second step, after the item parameters have been calculated. For
the calculation of values of θi, he proposes to use the weighted likelihood function

Lw :=
n
∏

i=1

m
∏

j=1

exp(θi − δ̂j)
xij

1 + exp(θi − δ̂j)
w(θi)

where the weights are defined by

w(θi) :=
(

m
∑

j=1

exp(θi − δ̂j)

(1 + exp(θi − δ̂j))2

)1/2

Maximizing this likelihood entails the equation

m
∑

j=1

eij −

∑m
j=1 eij (1− eij) (1 − 2 eij)

2
∑m

j=1 eij (1− eij)
=

m
∑

j=1

xij (13)

where

eij :=
exp(θi − δ̂j)

1 + exp(θi − δ̂j)

WLEs are found by solving (13) instead of (12). For our application, Figure 4.2 compares the
MLE and WLE estimates of values of θ(s). One obviously gets very similar values.8

4.3 How to construct a dependent variable?

Having estimated a Rasch model, one can define a variable, say C, having values ci := θ̂i which
represent the latent competencies. This variable can then be used as a dependent variable in
further regression analyses. However, one could also use the variable S which simply records
the number of correctly answered items (see Section 2.2). For each value of S (except 0 and m

7As explained by Pohl and Carstensen (2012), also the NEPS SUFs contain WLEs.
8For further discussion, see Linacre (2009).
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Fig. 4.3 Plot of the function s −→ cs with d = 0 (dashed line), and s −→ C(s)
(solid, already shown in Figure 4.2).

if not using WLEs) there is exactly one value of C, so one can consider C as a function of S.
This is already shown in Figure 4.2.

So the question remains, Why not use S instead of C ? Both are quantitative variables, the
difference concerns the metric. S simply counts the number of correct answers, C entails a
nonlinear transformation. Is there an argument for using C instead of S ?

One argument could be that C, in contrast to S, takes item difficulties into account. However,
the Rasch model derives the item parameters from frequencies of correct and wrong answers,
and as I have shown above, this is an inherently problematic approach. Also note that most
of the difference between C and S does not result from differences among item difficulties but
from a logit transformation. To illustrate, I use the Rasch model with the constraint that all
item parameters are equal, say equal to d. Starting from (12), and using cs to denote the person
parameter in score group s, one finds

exp(cs − d)

1 + exp(cs − d)
=

s

m

and consequently

cs = log

(

s

m− s

)

+ d

As shown by Figure 4.3, already without taking into account item difficulties one gets an essen-
tially different metric.

In order to construct a variable that is better comparable with S, one can apply the inverse
logit transformation to C, resulting in a variable C∗ with values

c∗ =
exp(cs)

1 + exp(cs)

As shown by Figure 4.4, S and C∗ are not much different, and both could be used as a dependent
variable. Using instead the variable C would require to refer to a not easily understandable
metric, entailing that also effects of explanatory variables are difficult to interpret. To illustrate,
I use

E(C | Z = z) ≈ αc + zβc (14)
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Fig. 4.4 Plot of the function s −→ C∗(s). The dashed line shows a linear
relationship.

which is analogous to (2). The OLS estimates are α̂c = 0.0784 and β̂c = 0.3495. How do these
figures relate to girls’ and boys’ competencies for solving the items? One could apply the inverse
logit transformation:

exp(0.0784)

1 + exp(0.0784)
= 0.52 and

exp(0.4278)

1 + exp(0.4279)
= 0.61

These figures are then similar to the proportions of items which girls (11.77/23 = 0.51) and boys
(13.23/23 = 0.57) can solve correctly.

5. Plausible values

In this section I discuss the proposal to use so-called plausible values for the dependent variable
of regression analyses. In order to understand this proposal one needs to consider the models to
be used for the construction of plausible values. There are two kinds: models with and without
additional covariates for conditioning. I begin with models which do not include conditioning
variables.

5.1 Models without conditioning variables

As a starting point, I briefly describe the marginal maximum likelihood method. This method
was introduced to separate the estimation of item parameters from the calculation of competence
values (Bock & Aitkin 1981). Only for Rasch models this can already be achieved with the
method of conditional likelihood estimation (see Section 4.1). Here I describe the marginal
likelihood method, and subsequently the calculation of plausible values, by referring again to
the Rasch model.

The basic idea is to substitute the model parameters which represent the latent competencies
by a random variable, say U . Analogous to (11), the model can then be written as

Pr(X1=x1, . . . ,Xm=xm | u; δ) =
m
∏

j=1

exp(xj (u− δj))

1 + exp(u− δj)
(15)
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Fig. 5.1 Scatterplot of item parameters estimated with conditional (CML) and
marginal (MML) maximum likelihood method, respectively.

where u is a value of the random variable U . If one now assumes a distribution of U , say f(u),
one can define a marginal likelihood function

Lm(δ) :=

n
∏

i=1

∫

u

m
∏

j=1

exp(xij (u− δj))

1 + exp(u− δj)
f(u) du (16)

By maximizing this function one gets estimates of the item parameters δj .

For the Rasch model, these estimates are similar to the estimates produced by conditional
likelihood estimation. In fact, using a standard normal distribution for integration, one gets
almost identical estimates for the NEPS data, see Figure 5.1.9

Having estimated item parameters, there are different possibilities for the definition of latent
competencies. For example, one can use again equation (12) to calculate for each person a value
of her latent competence. The proposal to represent latent competencies by plausible values
follows a different approach that is based on the distribution of U conditional on observed test
results.

It is assumed that one can refer to a joint distribution of U and the random variables X1, . . . ,Xm

by a probability/density function

g(x1, . . . , xm, u; δ) := Pr(X1=x1, . . . ,Xm=xm | u; δ) f(u) (17)

One can then consider the distribution of U conditional on observed test results:

g(u | x1, . . . , xm; δ) =
g(x1, . . . , xm, u; δ)

∫

u g(x1, . . . , xm, u; δ) du
(18)

Using the parametric form assumed in (15), this becomes

g(u | x1, . . . , xm; δ) =

∏

j

exp(xj (u− δj))

1 + exp(u− δj)
f(u)

∫

u

∏

j

exp(xj (u− δj))

1 + exp(u− δj)
f(u) du

(19)

9For comparison, the item parameters estimated with (16) have been transformed to get the same mean and
standard deviation as the parameters in Table 4.1.
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In both the numerator and the denominator one can factor out the term
∏

j exp(−xj δj), and
so one can write

g(u | x1, . . . , xm; δ) = (20)

∏

j

exp(xj u)

1 + exp(u− δj)
f(u)

∫

u

∏

j

exp(xj u)

1 + exp(u− δj)
f(u) du

=

exp(s u)
∏

j 1 + exp(u− δj)
f(u)

∫

u

exp(s u)
∏

j 1 + exp(u− δj)
f(u) du

where s =
∑

j xj is the total number of correctly answered items. This shows that one gets
the same conditional distribution for all response patterns that belong to the same score group.
It therefore suffices to consider the conditional distributions g(u|s; δ) where s is a value of the
variable S (the total number of correctly answered items).

For each person i who participated in the test there is a sum score si and one can therefore think
of a conditional distribution of U that has the density g(u|si; δ). Plausible values are random
draws from these conditional distributions (see, e.g., Mislevy et al. 1992: 138f). Of course, in
order to actually calculate such values one needs an assumption about the parametric form of the
unconditional distribution of U (denoted above by f(u)). Often used is a normal distribution.
One can then calculate K sets of plausible values, say

{p
(k)
i | i = 1, . . . , n}

for k = 1, . . . ,K. These plausible values can be used to estimate characteristics of the distribu-
tion of U conditional on the test results of all sampled persons.

Plausible values can also be used for further regression analyses. This can simply be done by

defining dependent variables C(k) having values p
(k)
i . One then performs K regression analyses

and finally uses mean values of the calculated parameters. As an alternative, one can use mean
values of the distributions g(u|si; δ), often called ‘expected a posteriori estimators (EAPs)’. One
then defines just one dependent variable, say Ce, having values

cei := E(U | si) =

∫

u
u g(u | si; δ) du (21)

Which of the two methods should be preferred? An argument for preferring plausible values
concerns the variance of the distribution of latent competencies. Using EAPs instead of plausible
values tends to underestimate this variance.10

A more important question concerns whether one should use plausible values (or EAPs) instead
of competence scores which can directly be derived from numbers of correct responses (as dis-
cussed in previous sections). The main argument seems to be that plausible values should be
used when the tests for generating competence data do not allow ‘sufficiently reliable’ measuring
of individual competencies (see, e.g., Mislevy, Johnson & Muraki 1992: 137f). This could be
the case in large-scale assessments which employ the method of matrix-sampling of items, and
each person is administered only a very small number of items. It is proposed, then, that one
should no longer attempt to measure individual competencies but directly estimate a presup-
posed population distribution of latent competencies.

But how might it be possible to estimate the distribution of a quantity which is not derived from
individual values of that quantity? As argued by Mislevy, Johnson and Muraki (1992: 138),
this becomes possible by considering competencies as ‘missing values’, in fact, values which are

10This has also been shown in simulation studies, see, e.g., OECD (2009: 98), von Davier, Gonzalez & Mislevy
(2009).
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not ‘observed’, or ‘measured’, for all persons (see also Mislevy 1991). The argument is that,
instead of intending to measure competencies, one can construct a model for the distribution
of the completely missing values, and then estimate that model with whatever information is
available.

Following this reasoning, it seems that the basic question concerns our understanding of the
NEPS competence data: Should we assume that these data do not provide ‘sufficiently reliable’
information about individual competencies and therefore use the method of plausible values?
The alternative is easily misleading, however. It is surely important to think about measurement
errors and how they can be taken into account. But this is not done, at least not explicitly, by
the method of plausible values. While it is sometimes suggested to think of the distributions
g(u|s; δ) as representing measurement errors (e.g., Wu 2005, OECD 2009: 96), there is no con-
ceptual foundation for this interpretation.11 Whether plausible values are useful for coping with
measurement errors should therefore be considered as an open question.

5.2 Conditioning variables

As described in the previous section, the leading idea of the method of plausible values is to
consider competencies as completely missing values and to estimate distributions of these values
based on whatever information is available. The approach suggests to use not only information
from competence tests but also from any number of further variables which might be correlated
with competencies.

Following this idea, one does not start from just one distribution of latent competencies, but
from distributions conditional on these additional covariates (often then called ‘conditioning
variables’). Let Z denote a vector of such covariates. The latent competence of a person i is
then assumed to be h(zi;β) + ui where h(zi;β) is a parametric function of the person’s value of
Z.

As before, one assumes a joint distribution of X1, . . . ,Xm and U , now conditional on values of
Z. It is assumed that the distribution of U is independent of Z (and δ), so that one can write

g(x1, . . . , xm, u | z; δ) = Pr(X1=x1, . . . ,Xm=xm | u, z; δ) f(u) (22)

Instead of (15), the model for the response patterns becomes

Pr(X1=x1, . . . ,Xm=xm | u, z; δ) =
m
∏

j=1

exp(xj (h(z;β) + u− δj))

1 + exp(h(z;β) + u− δj)
(23)

and completely analogous to the derivation of (20) one gets

g(u | s, z; δ) =

exp(s (h(z;β) + u))
∏

j 1 + exp(h(z;β) + u− δj)
f(u)

∫

u

exp(s (h(z;β) + u))
∏

j 1 + exp(h(z;β) + u− δj)
f(u) du

(24)

For each person i there is now a distribution of her latent competencies, described by the density
g(u−h(zi;β) | si, zi; δ), which depends on both her test result and her values of the conditioning
variables.

To illustrate this approach with the NEPS data, I use h(z;β) = zβ with z = 0 for girls and

11Consider, for example, the following statement: Plausible values “are Monte Carlo draws from posterior profi-
ciency distributions for each individual, and hence incorporate all sources of uncertainty (including measurement
error).” Schofield et al. 2013: 3.
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Fig. 5.1 Conditional distributions of latent competencies for boys (solid) and
girls (dashed), calculated according to (24).

Table 5.1 Estimated latent competence scores for score groups s = 0, . . . , 23.

number of latent scores number of latent scores

s boys girls boys girls s boys girls boys girls

0 0 5 −2.46 −2.59 12 195 181 0.11 0.04
1 7 10 −2.18 −2.29 13 188 188 0.29 0.22
2 10 31 −1.91 −2.01 14 221 194 0.47 0.40
3 33 51 −1.66 −1.75 15 185 143 0.66 0.59
4 42 82 −1.43 −1.51 16 210 153 0.85 0.78
5 70 84 −1.21 −1.29 17 205 144 1.05 0.98
6 89 112 −1.01 −1.08 18 163 110 1.26 1.18
7 98 148 −0.81 −0.88 19 123 85 1.49 1.40
8 122 135 −0.62 −0.69 20 97 56 1.73 1.64
9 132 159 −0.44 −0.50 21 73 30 2.00 1.90

10 156 176 −0.25 −0.32 22 42 23 2.29 2.18
11 170 178 −0.07 −0.14 23 18 3 2.62 2.49

z = 1 for boys. Figure 5.1 shows the conditional distributions, separately for girls and boys, for
three score groups.12

Analogous to (21), one can define a mean value (EAP)

ci := E(U | si, zi) = h(zi;β) +

∫

u
u g(u | si, zi; δ) du (25)

as an estimate of a person’s latent competence. These values depend on score groups and
covariates. Estimates for boys and girls are shown in Table 5.1.

The table reveals a striking form of statistical discrimination: In each score group girls get lower
latent competence values than boys (already seen in Figure 5.1). In fact, even with exactly the
same response pattern, girls get a lower latent competence than boys. So one should conclude
that this approach does not lead to reasonable measures of individual competencies.

Possibly, this could be ignored if one does not intend to measure individual competencies. How-
ever, if derived from a model that contains conditioning variables, plausible values entail the

12Model parameters have been estimated by maximizing a marginal likelihood which is calculated with numerical
integration.
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same discrimination. Plausible values of a person i are then random draws from the distribu-
tions g(u−h(zi;β) | si, zi; δ) as illustrated in Figure 5.1. I therefore conclude that, for subsequent
regression analyses, plausible values, or EAPs, should only be used if they are not derived from
models containing conditioning variables.

The interest in regression analyses suggests a further argument for not using conditioning vari-
ables. In particular in sociological applications, such analyses are often intended to contribute
to explanations. In the present context, one is interested in variables on which the develop-
ment of competencies depends. When using regression models for studying such dependencies,
a minimal condition for acceptable explanations is that the dependent variable can be defined
independently of the explanatory variables. Quantitative measures of competence which are to
be used as values of a dependent variable should therefore be derived only from observable test
scores.

6. Models without latent competencies

So far I have considered two-step procedures: In a first step one constructs a variable represent-
ing competencies of individual persons, in a second step this is used as the dependent variable
in regression models. Another approach is to use regression models which directly make prob-
abilities of observed test results dependent on explanatory variables. In this section, I briefly
consider this approach.

6.1 A model assuming conditional independence

A simple regression model for the response patterns assumes conditional independence and can
be written as

Pr(X1=x1, . . . ,Xm=xm | Z=z;β, δ) ≈
m
∏

j=1

exp(h(z;β) − δj)
xj

1 + exp(h(z;β) − δj)
(26)

It is assumed that the probability on the left-hand side depends on item parameters δ :=
(δ1, . . . , δm), and on explanatory variables. The dependence on explanatory variables is specified
by a parametric function h(z;β) where z is the value of a covariate Z, possibly consisting of
several components, and β is a parameter vector.

An obvious advantage is that model (26) does not require to think in terms of latent competen-
cies. On the other hand, there is no reference to any summary measure of competence at all,
and so it is again difficult to interpret effects of explanatory variables.

To illustrate, I use model (26) for comparing the math competencies of boys and girls: h(z;β) =
z β, where z = 0 for girls and z = 1 for boys. Treating missing values as wrong answers, and
using maximum likelihood estimation, one gets β̂ = 0.297 (std.err. 0.013). How is this value to
be interpreted?

In contrast to regression models with a quantitative dependent variable representing compe-
tencies (e.g. S or C), model (26) requires to think in terms of probabilities of correct answers.
The model allows one to compare girls’ and boys’ probabilities for all possible response pat-
terns. These are, however, very small numbers. As an alternative, one can use mean values, for
example the index Y ∗(z) defined in (9), based on item-specific probabilities

Pr(Xj=1 | Z=z) ≈
exp(zβ̂ − δ̂j)

1 + exp(zβ̂ − δ̂j)

(see Table 6.1). Based on formula (9), estimated mean probabilities of correct answers are 0.51
for girls and 0.58 for boys (actually almost equal to the observed proportions).
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Table 6.1 Observed frequencies and estimated probabilities of correct answers.

observed model 26 model 27

Item boys girls boys girls boys girls

1 0.56 0.57 0.60 0.53 0.60 0.53
2 0.74 0.59 0.70 0.64 0.70 0.64
3 0.66 0.60 0.66 0.59 0.66 0.59
4 0.32 0.25 0.32 0.26 0.32 0.25
5 0.52 0.48 0.54 0.46 0.54 0.46
6 0.37 0.31 0.37 0.31 0.37 0.31
7 0.37 0.37 0.40 0.33 0.40 0.33
8 0.83 0.76 0.82 0.77 0.82 0.77
9 0.90 0.85 0.89 0.86 0.89 0.86
10 0.60 0.56 0.61 0.54 0.61 0.54
11 0.59 0.54 0.60 0.53 0.60 0.53
12 0.23 0.17 0.23 0.18 0.23 0.18
13 0.55 0.46 0.54 0.47 0.54 0.47
14 0.73 0.70 0.74 0.68 0.75 0.68
15 0.77 0.67 0.75 0.69 0.75 0.69
16 0.80 0.76 0.80 0.75 0.81 0.75
17 0.60 0.49 0.58 0.51 0.58 0.50
18 0.50 0.38 0.47 0.40 0.47 0.40
19 0.44 0.40 0.45 0.38 0.45 0.38
20 0.32 0.21 0.30 0.24 0.30 0.24
21 0.86 0.83 0.86 0.82 0.87 0.82
22 0.51 0.49 0.54 0.47 0.54 0.46
23 0.45 0.33 0.43 0.36 0.43 0.36

6.2 A version with unobserved heterogeneity

For comparison with the model discussed in Section 5.2, one can consider to specify the depen-
dence on covariates by a function h(z;β) + u where u is the value of a further random variable,
U , representing unobserved heterogeneity. The model then becomes

Pr(X1=x1, . . . ,Xm=xm | Z=z, U=u;β, δ) ≈

m
∏

j=1

exp(h(z;β) + u− δj)
xj

1 + exp(h(z;β) + u− δj)
(27)

Assuming for the distribution of U a parametric density, say f(u;φ), independent of Z, one can
use a marginal likelihood

Lm(δ, β, φ) :=
n
∏

i=1

∫

u

m
∏

j=1

exp(h(zi;β) + u− δj)
xij

1 + exp(h(zi;β) + u− δj)
f(u;φ) du (28)

for estimating the model parameters. The contribution of person i equals the expectation, taken
w.r.t. the distribution f(u;φ), of the probability of the person’s response pattern.

To illustrate, I use the same data as in Section 4 and assume a standard normal distribution for
U . Treating missing values as wrong answers, the estimated item parameters are almost equal
to those resulting from model (26), see Figure 6.1.

The estimated value of β is 0.36 (std.err. 0.029). For interpretation, one has to refer to the
question how the probabilities of giving correct answers depend on values of Z. The quantities
of interest are then Pr(Xj=1 | Z=z) to be aggregated in some way (see Section 6.1). However,
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Fig. 6.1 Scatterplot of item parameters estimated with models (26) and (27),
respectively.

initially the model only provides

Pr(Xj=1 | Z=z, U=u) ≈
exp(zβ̂ + u− δ̂j)

1 + exp(zβ̂ + u− δ̂j)

So one needs a distribution of U for calculating a mean probability. Should one use the un-
conditional or a conditional distribution? In contrast to the model discussed in Section 5.2, in
the present model U is not considered as providing information about latent competencies; and
there is, therefore, no reason for using conditional distributions of U . Instead, U is interpreted
as representing unobserved heterogeneity in the sense of omitted explanatory variables. One
can therefore simply use the distribution f(u;φ) that served to set up the model, and since this
distribution was assumed to be independent of Z, one can use

Pr(Xj=1 | Z=z) ≈

∫

u

exp(zβ̂ + u− δ̂j)

1 + exp(zβ̂ + u− δ̂j)
f(u | φ̂) du

to estimate the mean probability of a correct answer to item j. For the example with a standard
normal density, such estimates are shown in Table 6.1 in the columns labelled ‘model 27’. They
are almost identical with those resulting from model (26) that was used in Section 6.1.

7. Conclusion

In this paper, I consider several methods to define dependent variables representing results of
competence tests and illustrate these methods with NEPS data on math competencies of 5th
grade pupils. The simplest and easily comprehensible method is to use the number of correct
responses as values of a quantitative dependent variable in a regression model. Instead of simply
using the number of correct responses one can define weighted versions which could take into
account that items might have different importance for the competence that the test is intended
to measure. However, it is easily misleading to think of such weights as ‘item difficulties’ which
can be derived from proportions of wrong responses.

Instead of using these simple approaches to the construction of a dependent variable, one can
start from a probabilistic framework. As an example, I consider the Rasch model that can be
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used to construct a variable representing latent competencies which, in a second step, can be used
as a dependent variable in regression models. I argue that this approach has two disadvantages,
compared with using a simple summary index. The Rasch model introduces a nonlinear metric
which is difficult to understand and therefore makes it difficult to interpret effects of explanatory
variables. Moreover, the Rasch model employs a notion of ‘item difficulties’ which are derived
from the distribution of competencies of the persons participating in the test.

I then discuss the proposal to use so-called plausible values for the construction of dependent
variables of further regression analyses. I distinguish between versions with and without further
conditioning variables. I show that using plausible values, when derived from models including
conditioning variables, entails striking forms of statistical discrimination, and propose that this
approach should not be used for sociological analyses.

Finally, I briefly consider models which avoid a reference to latent competencies and instead
directly relate the observable response patterns to values of explanatory variables. While at-
tractive at first sight, this approach has the drawback that such models must be supplemented
by a procedure for aggregating item-specific probabilities.
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