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An Imputation Model For Multilevel Binary Data

Abstract

Missing data are a ubiquitous problem of almost all large-scale surveys, and it is also an issue to
be addressed in the National Educational Panel Study (NEPS). Analyzing survey data without
regarding missing data might cause invalid statistical inference. This is especially true if the
process that creates the missing data is not a completely random one, i.e., is non-ignorable. If the
probability of an observation being missing depends on observed measurements, the method of
multiple imputation provides a remedy for adequately dealing with such situation. Its underlying
idea is to replace missing values several times with plausible values. The resulting data sets are
then analyzed separately, and the statistical results of the distinct analyses are subsequently
combined into an overall result. A technique that has proven its value in this context is the
method of multivariate imputation by chained equations. This technique demands a definition
of a separate regression model for each incompletely observed variable. On the basis of the
regression models thus defined, missing values are replaced by predicted ones. The main requisite
for the feasibility of the method of multivariate imputation by chained equations is that the
regression models applied be in accordance with the relationships prevalent in the data. The
R package mice offers a comprehensive collection of relevant imputation models, for example,
for continuous data. However, it is currently lacking an imputation model for multilevel binary
data. This paper presents an accordant add-on function to enrich the toolbox of mice. The
validity of this novel imputation function is shown using Monte Carlo simulations.

Keywords

multiple imputation, multivariate imputation by chained equations, imputation model, multi-
level binary data
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1 Introduction

In the majority of cases, most large scale surveys suffer from problems of missing data. Simply
ignoring missing data in statistical analysis and conducting complete-case analyses might how-
ever result in invalid inference. This is especially the case if the process that creates the missing
data is not a completely random one, i.e., is non-ignorable. If, additionally, the percentage of
missing values is higher than about five percent of the data, statistical inferences are highly
likely to be biased. The method of multiple imputation has been proven to be effective when
dealing with incompletely observed data where the probability of a value being missing depends
on the values of the observed study variables. The general idea of this approach is to replace
missing values several times with equally plausible values. The resulting data sets are then an-
alyzed separately, and the statistical results of the distinct analyses are subsequently combined
into an overall result. For this purpose, Rubin developed a set of rules (Rubin, 1987): The
combined parameter estimate is the mean of the obtained estimates and the combined standard
error incorporates both between and within imputation variability. The practicability of the
method of multiple imputation depends on whether the variable with missing values depends
on observed variables or whether it can be explained by external factors. If this is not the case,
there is a high risk of multiple imputation producing unfeasible outcomes.1 One popular way to
conduct multiple imputation is by using a sequence of regression models (Raghunathan et al.,
2001; van Buuren et al., 2006; van Buuren & Groothuis-Oudshoorn, 2011). The basic idea of
this approach is to specify separate imputation models for each variable with missing values and
to impute data on a variable-to-variable basis. This imputation technique is also described as
multivariate imputation by chained equations. Generating feasible imputed data sets requires
regression models that are in accordance with the analysis model in mind, i.e., if the analysis
model comprises an interaction effect the imputation model should do as well. Furthermore,
relationships prevalent in the data have to be preserved, for example, it is crucial to factor in
nonlinear relationships. The regression models used have also to account for the character of
the considered variables. Variables can be, for example, binary, nominal, ordinal, or continu-
ous. That is, statistical software aiming to provide reliable imputed data sets in very general
contexts should offer a wide range of functionality. To the author’s knowledge, the R package
mice currently offers the most comprehensive collection of relevant instruments (van Buuren
& Groothuis-Oudshoorn, 2011). Among other things, it comprises imputation routines for pre-
dictive mean matching, Bayesian linear regression, logistic regression, and hot-deck imputation.
In addition, the package provides some functions to impute different kinds of multilevel data,
for example, it facilitates imputing two-level normal data. Due to its intuitive structure the
package can easily be extended by new functionalities. For example, researchers have recently
implemented an add-on function to impute multilevel count data (Kleinke & Reinecke, 2013).
This paper aims to further enrich the toolbox of mice by introducing an add-on function that
will make possible to impute multilevel binary data.

Such an imputation routine might be of special relevance in large-scale survey concerned with
students in institutions, such as the National Educational Panel Study (NEPS). For example,
in the NEPS fall survey of 2010, Grade 9 students were asked, among other things, about their
realistic aspirations concerning graduation. The corresponding data could be used to find out
whether the migration background of a student would influence his/her aspiration to graduate
from secondary school qualifying for university admission (i.e., graduating with Abitur). The
dependent variable y–graduation with Abitur yes or no–in a corresponding regression model is
binary. A multilevel logistic regression analysis is well suited to describe such a relationship

1A common misconception is that multiple imputation is restricted to data sets where values are missing
completely at random. However, this is not the case (van Buuren & Groothuis-Oudshoorn, 2011): An overview
of techniques that facilitate tackling missing patterns that are not completely at random is presented in Little
(2008) and Albert & Follmann (2008).
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properly. However, studying the variable y shows that around five percent of the values of y
is missing. It seems implausible to assume that the process creating the missing values in y is
completely random. Thus, simply ignoring missing values in the analysis might likely lead to
invalid inference. Fortunately, the NEPS data is very rich and, therefore, it is reasonable to state
that the probability of an observation being missing can be explained by other study variables.
Counting on this circumstance, missing values of y can be imputed using mice. For this purpose
the function introduced in this paper can be applied: In combination with mice it allows us to
impute two-level binary data. The remainder of this paper is structured as follows: In Section 2
we describe the newly developed imputation procedure and detail the corresponding R code.
We have run Monte Carlo simulations to test the feasibility of the developed routine. The
corresponding setting and the respective outcomes are given in Section 3. The paper concludes
with a short discussion of the results, a list of extension points, and some ideas for further
research.

2 Imputation Method for Multilevel Binary Data

The general framework that mice uses to create multiple imputations is a fully conditional
specification approach named multiple imputation by chained equations. This kind of approach
requires one imputation model be specified for each incompletely observed variable and thus also
the corresponding conditional density. On the basis of the conditional densities, imputations can
then be drawn. The R package mice already offers a comprehensive collection of imputation
models, however, none for multilevel binary data. Subsequently, we describe in detail the general
imputation processing conducted within mice. Then, we introduce our newly designed add-on
function that will allow us to impute multilevel binary data.

2.1 Multiple imputation by chained equations

Let the p variables Y1, . . . , Yp forming the data set Y be incompletely observed. We assume that
Y follows a p-variate distribution P (Y | θ) where θ describes a vector of unknown parameters
θ1, . . . , θp. Hence, P (Y | θ) is completely determined by the parameter vector θ, and replace-
ments for missing values can be achieved by simply drawing samples therefrom. The components
of θ are defined such that they are specific to the conditional marginal density P (Yj | Y−j , θj),
j = 1, . . . , p. Here Y−j denotes the subset of Y excluding Yj . This kind of specification facilitates
constituting P (Y | θ) in a pretty straightforward way: First, based on the observed data Y obs

the posterior distribution P (θ | Y obs) of θ is computed. Then, from P (θ | Y obs) new parameter
values θ∗ are sampled. Finally, relying on P (Y | Y obs, θ∗) for missing values replacements Y ∗

are predicted (by simulation). Both distributions to draw from are approximated by Gibbs sam-
pling. Starting from an initial imputation step made up by a sample from observed marginal
distributions, the tth iteration step of the accordant sampler involves successively drawing from

θ
∗(t)
1 ∼ P (θ1 | Y obs

1 , Y
(t−1)
2 , . . . , Y (t−1)

p )

Y
∗(t)
1 ∼ P (Y1 | Y obs

1 , Y
(t−1)
2 , . . . , Y (t−1)

p , θ
∗(t)
1 )

...

θ∗(t)p ∼ P (θp | Y obs
p , Y

(t−1)
1 , . . . , Y

(t−1)
p−1 )

Y ∗(t)
p ∼ P (Yp | Y obs

p , Y
(t−1)
1 , . . . , Y

(t−1)
p−1 , θ∗(t)p ),

(1)

where Y
(t)
j = (Y obs

j , Y
∗(t)
j ) is the imputed variant of Yj at iteration t. To account for the un-

certainty of the prediction, the whole procedure is repeated m times to obtain m imputations.
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Commonly, between three and ten imputation are deemed to produce sufficiently accurate re-
sults (Schafer, 1999).

2.2 Univariate Imputation Model

Multiple imputation by chained equations demands that a univariate imputation model be
specified for each incompletely observed variable Yj . The essence of the imputation model
is to take from Y−j a set of predictors assessed to be relevant for explaining Yj and to compute
a corresponding regression model. The kind of model be chosen depends–among other things–
on the analysis model as well as on the scale and the type of the variable Yj . A multilevel
logistic regression approach allows us to model binary data when observation units are nested
within higher level categories. Alternatively, this kind of model can be described as a mixed-
effects logistic regression model. Details about this model type are given in Hedeker (2003)
and Pinheiro & Bates (2000). A typical example of such a setting is a two-level model where
students are nested within schools. In formula, a corresponding random intercept and slope
model can be written as

log
( pj,ik

1− pj,ik
)

= (β0 + u0k) + (β1 + u1k)X1,ik + β2X2,ik + . . .+ βqXq,ik,

where

pj,ik = P (Yj,ik = 1) and Yj,ik is the outcome of the binary variable Yj measured for person i in
cluster k,

β0 is the overall intercept of the model,

β1, . . . , βq refers to the fixed effects of the model,

u0k is the random intercept of the model,

u1k is the random slope of the model, and

X1,ik, . . . , Xq,ik are the values of the predictor variables X1, . . . , Xq measured for person i in
cluster k, {X1, . . . , Xq} ⊆ Y−j .

This kind of specification can easily be extended to also account for interaction effects. The ran-
dom effects are assumed to follow a normal distribution with mean zero. In accordance therewith,
the quantities that have to be estimated are the intercept β0, the fixed effects β1, . . . , βq, as well
as the variances τ0 = var(u0k) amd τ1 = var(u1k) of the random effects. That is, in sum q + 3
parameters have to be estimated. The actual estimation procedure is conducted on the basis
of observed values of Yj and X1, . . . , Xq. New values for all missing values of Yj are predicted
relying on the estimated model.

2.3 Imputation Function

In mice the actual imputation procedure is carried out by the function mice. This function
demands an input argument method determining the univariate imputation models to be used.
Passing the string “norm” will instruct that the built-in function for Bayesian linear regression
be used. Let the data set Y be composed by Y1, Y2, Y3, and Y1 be the only variable containing
missing values. Then, the command to conduct Bayesian linear regression to impute values for
Y1 is

mice(Y, method=c("norm","",""))
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Here, the empty quotation marks indicate that the variables Y2 and Y3 need not to be imputed.
The set of variables used to predict missing information is determined by the predictorMatrix
argument of the mice function. To this argument a square matrix of the dimension equal
to the number of variables in the data set has to be assigned. Each row corresponds to one
univariate imputation model and each column to one variable in the data set. The entries
of the matrix indicate whether the corresponding variable should be used as predictor in the
corresponding imputation model. A 0 indicates that the variable should be neglected, whereas
1 states that the variable should be treated as a fixed–but not as a random–effect. A 2 indicates
a cluster variable, that is it characterizes a higher level, and −2 specifies a random effect (which
additionally determines a fixed effect). Assume that the variable Y1 should be imputed using the
built-in linear multilevel function of mice (denoted by “2L.norm”), while the variables Y2 and
Y3 should serve as predictors. Let Y3 constitute a cluster variable and Y2 give a corresponding
random effect. Then, the predictorMatrix argument is given by

pred <- matrix(c(0,2,-2,

0,0,0,

0,0,0), ncol=3)

The corresponding call of mice is

mice(Y, predictorMatrix=pred, method=c("2L.norm","",""))

The mice package has been designed in such a way that users can easily add their own func-
tions for univariate imputation methods. New imputation functions have to be named by
mice.impute.name, where name identifies the univariate imputation model. The newly de-
veloped function to impute multilevel binary data is labeled mice.impute.2l.binom. It requires
mice version 2.18 (or newer) and the R package lme4 (Bates et al., 2012). In its current version,
the function fits a two-level logistic regression model with multivariate normal random effects
using a restricted maximum likelihood estimation approach. That is, it allows only one class
variable.

Figure 1 shows the source code of the function. Its input arguments are y, ry, x, and type.
These are the standard arguments passed by the mice function. The y argument contains the
incompletely observed variable to impute. It has length n. The argument ry comprises an vector
that indicates whether a value of y is observed or not:

ry =

{
TRUE , if y is observed,

FALSE , otherwise.

The set of complete or completed predictor variables to be used for modeling y is given by the
n× q matrix x. Note that mice.impute.2l.binom does not require that extra intercept variables
be specified: The model comprises always an intercept for the fixed effects model part and the
specification of a class variable automatically entails a random intercept. The type argument
shows whether predictor variables should be considered as fixed or random effects or whether
they should be handled as class variables. It is determined by the predictorMatrix argument of
the mice function. Because mice.impute.2l.binom supports only two levels, it will abort with
an error message if type reports more than one class variable. After having transformed all
input arguments appropriately, mice.impute.2l.binom fits a two-level logistic regression model
using the lmer function of the lme4 package. On the basis of the fitted model, the posterior
predictive distribution function P (Y | Y obs, θ∗) of y is determined and new values are drawn
for the missing values of y. To update afore the parameter vector θ∗, we employ a two-stage
procedure. (A similar processing is also suggested by Gelman & Hill (2007, p. 541).) In a first
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step, new parameters β∗ = (β∗0 , . . . , β
∗
q ) are simulated from a (q+ 1)-variate normal distribution

with mean β̂ and a covariance matrix equal to the variance-covariance matrix of β̂, which is
the posterior predictive distribution of β. For this purpose, the product of the transpose of the
Cholesky decomposition of the variance-covariance matrix of β̂ and a q + 1 dimensional vector
of N(0, 1) random values is added to β̂ (Raghunathan et al., 2001). In a second step, in order
to draw new random effects from their correct posterior predictive distribution, we compute for
each level k of the class variable the variance-covariance matrix of the respective random effects
urk, r = 0, . . . , s. For this purpose, we apply the ranef function of the lme4 package

ranEff <- ranef(fitted.model, condVar=TRUE)

ranEffCovMat <- attributes(ranEff[[1]])$postVar

Here, the input argument fitted.model refers to the R object resulting from the lmer function.
All other input parameters are fixed. On the basis of the variance-covariance matrices of the
random effects, for each class level k new random effect values u∗k = (u∗0k, . . . , u

∗
sk) are simulated

employing the processing already applied to yield β∗, see also Raghunathan et al. (2001). By
means of the newly simulated parameters β∗ and u∗k and the afore-fitted logistic regression model,
probabilities are predicted for all incompletely observed values of y. Based on these probabilites,
accordant two-level binary data are simulated and passed over to the mice function. Hence, each
call of mice.impute.2l.binom implies passing through one iteration of the Gibbs sampler shown in
formula (1). In mice.impute.2l.binom, the functionality to predict probabilities for observations
in new classes is not yet implemented. That is, if one or more levels of the class variable comprise
only missing values, the function aborts with a corresponding error message.

3 Monte Carlo Simulations

To evaluate the newly developed add-on function, we run Monte Carlo simulations based on two
types of multilevel models. First, we perform simulations using a random intercept model, then
we employ a random intercept and slope model. In both settings, we simulate–on the basis of the
model considered–a data set comprising fifty groups, each consisting of one five thousand units.
The set of true parameters used for this purpose is denoted by Q. Then, in each simulation
step, we sample from this data set one thousand observations. We assume that missing values
occur only in the dependent variable y, whereas the predictor variables x are assumed to be
fully observed. Missing values are introduced via Bernoulli experiments. The probability pi
indicating whether a value yi of y is missing is defined as follows:

pi = invlogit(−1 + x).

This processing yields an average percentage of 31% of missing values in y. After having
constructed data sets this way, the missing values of each simulated data set are imputed
five times using the mice package in combination with the newly designed add-on function
mice.impute.2l.binom. Then a logistic regression model allowing for random effects is fitted to
each of the imputed data sets, and the results are combined according to Rubin’s rules (Rubin,
1987). The whole procedure is repeated 200 times. As Monte Carlo statistics we report the
following quantities:

(i) the average combined parameter estimate Q̂ across the 200 replications,

(ii) the standard deviation SDQ̂ of the combined parameter estimates across the 200 replica-
tions,

(iii) the bias B of the parameter estimation, which is quantified as B = Q− Q̂, and
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Figure 1: Add-on function for the R package mice to impute two-level binary data.

 
mice.impute.2l.binom <- function(y,ry,x,type){ 
 
  # Define fixed effects, random effects and group variable 
  Y <- y[ry] 
  X <- x[ry,,drop=F] 
  nam <- paste("V",1:ncol(X),sep="") 
  colnames(X) <- nam 
  if(sum(type==-2)>1) stop("This function can only handle one group variable!") 
  grp <- which(type==-2) 
  groups <- unique(X[,nam[grp]]) 
  ng <- length(groups)     ran <- which(type==2) 
  fixedeff <- paste(nam[-grp], collapse="+") 
  fixedeff <- paste("Y","~",fixedeff,sep="") 
  randeff <- ifelse(length(ran)==0,"1",paste(nam[ran], collapse="+")) 
  randeff <- paste("(",randeff,"|",paste(nam[grp]),")",sep="") 
  eff <- as.formula(paste(fixedeff,randeff,sep="+")) 
  dat <- data.frame(Y,X) 
 
  # Compute imputation model 
  fit <-  lmer(eff, data=dat, family=binomial(link="logit")) 
  fit.sum <- summary(fit) 
 
  # Cholesky decomposition of variance-covariance matrix 
  getChol <- function(mat,eff,lev=NA){    
    newMat <- mat 
    cholStatus <- try(u <- chol(newMat), silent = TRUE) 
    cholError <- ifelse(class(cholStatus) == "try-error", TRUE, FALSE) 
    if(cholError){   # If `mat' features an eigen value smaller than but very close to zero, replace it with 1e-04. 
      newEig <- eigen(newMat) 
      newEig2Val <- ifelse(round(newEig$values,5) <= 0, 1e-04, newEig$values)    
      newMat <- newEig$vectors %*% diag(newEig2Val) %*% t(newEig$vectors)   
      cholStatus <- try(u <- chol(newMat), silent = TRUE) 
      cholError <- ifelse(class(cholStatus) == "try-error", TRUE, FALSE) 
    } 
    if(cholError) { 
        if(eff=="ran") { 
          stop("Variance-covariance matrix of random effect on level ",lev," is not positive definite.") 
        } else { 
          stop("Variance-covariance matrix of fixed effects is not positive definite.") 
        } 
      } 
    return(t(chol(newMat))) 
  }  
 
  # Draw values from posterior predictive distribution of fixed effects 
  beta <- fit@fixef 
  rv <- getChol(as.matrix(vcov(fit)),eff="fix") 
  b.star <- as.vector(beta + rv%*%rnorm(ncol(rv))) 
  fitmis <- fit 
  fitmis@fixef <- b.star 
 
  # Draw values from posterior predictive distribution of random effects   
  ranEff <- ranef(fit, postVar=TRUE) 
  ranEffCovMat <- attributes(ranEff[[1]])$postVar 
  nRE <- dim(ranEffCovMat)[1] 
  u.star.mat <- matrix(NA, nrow=ng, ncol=nRE)   
  for(i in 1:ng){ 
    if(length(unique(ranEff[[1]]))>1){ 
      rvREi <- getChol(ranEffCovMat[,,i],eff="ran",lev=i)    
      u.star.mat[i,] <- unlist(ranEff[[1]][i,] + rvREi%*%rnorm(nRE)) 
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  } else { 
      u.star.mat[i,] <- unlist(ranEff[[1]][i,]) 
    }   
  }    
 u.star.mat <- cbind(1:ng, tau.star.u) 
 
  # Extract data corresponding to missing values of y 
  newdatamis <- data.frame(X=x[!ry,]) 
  colnames(newdatamis) <- nam   
 
  # Predict new probabilities for missing y values 
  predictP <- function(fitM, ranEffMat,newdata){        
    nmiss <- dim(newdata)[1] 
    if(length(unique(x[,2]))==ng){  # prediction for a new observation in an existing group   
      namR <- paste("R",1:(dim(ranEffMat)[2]-1),sep="") 
      colnames(ranEffMat) <- c("Group",namR) 
      newdata <- merge(newdata, ranEffMat, by.x=nam[grp], by.y="Group") 
      XD <- cbind(rep(1,nmiss),newdata[,nam[-grp],drop=F])  # design matrix for fixed effects 
      ZD <- newdata[,nam[ran],drop=F] # design matrix for random effects 
      RD <- newdata[,namR[-which(namR=="R1")],drop=F]  # matrix comprising for each group estimated random effects 
      addProd <- function(mat1,mat2){  # combine estimated random effects and observations      
        resM <- rep(0, nmiss)   
        if(dim(mat1)[2]>0){ 
          for(i in 1:dim(mat1)[2]){ 
            resM <- resM + mat1[,i]*mat2[,i]         
          }  
        }     
        return(resM) 
      } 
      linPred <- as.matrix(XD) %*% fitM@fixef + newdata[,"R1"] + addProd(RD,ZD)     
    } else {   # prediction for a new observation in a new group   
       stop("Not yet implemented: imputing data for group(s) with only missing values.") 
    }     
    invLogit <- function(z){1/(1+exp(-z))} 
    val <- invLogit(linPred) 
    return(val) 
  }    
  p <- predictP(fitmis, u.star.mat,newdatamis) 
 
  # Transform predicted probabilities into binary values 
  vec <- runif(length(p)) <= p 
  vec[vec] <- 1 
  if(is.factor(y)){ 
    vec <- factor(vec, c(0,1), levels(y)) 
  } 
 
  return(vec) 
} 
 

(iv) the coverage rate CR which denotes the percentage of the 95% confidence intervals that
cover the true parameters.2

This simulation frame is borrowed, to a large extent, from Kleinke & Reinecke (2013). All
experiments have been run on a desktop workstation equipped with Intel(R) Core(TM) i7, CPU

2As the sampling distribution of variance estimates of random effects is in general strongly asymmetric, stan-
dard errors are usually a poor characterization of the uncertainties in variance estimates (Bates, 2013, Chapter 1.5).
In line therewith, the multilevel function lmer of the R package lme4, which we use to fit our models, does not
report any standard error estimates or confidence intervals for random effects. Hence, coverage rates are only
given for fixed effects. Inference on estimated random effects can nevertheless be carried out by using, for exam-
ple, parametric bootstrapping, MCMC methods, or profile likelihood (Bolker, 2013). However, this is beyond the
scopes of this work.
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2.80GHz, 8GB RAM, under Windows 7, using a 64bit system.

3.1 Simulation 1: Random Intercept Model

In the first simulation setting we generate data sets using a pretty simple model: We determine
the binary variable y to depend on one single individual level predictor x only. Furthermore
we assume that the model intercept can be decomposed into the grand mean β0, which is the
same for all individuals, and a group-specific component u0, which varies between groups. The
corresponding data-generating process can be denoted as follows:

P (y = 1 | x) = invlogit(β0 + u0 + β1x)

β0 = 1

β1 = 0.75

σ = 0.3

u0 ∼ N(0, σ)

x ∼ N(0, 1)

where invlogit(z) = 1/(1+exp(−z)), and N(0, σ) describes the cumulative distribution function
of the normal distribution with mean zero and standard deviation σ. Table 1 shows the results
of the conducted simulations. We find that the estimated parameters are very close to the true
ones, with acceptable standard errors. Furthermore, we find marginal bias for all parameter
estimates and reasonable coverage rates. In sum, this allows us to conclude that for the model
specification considered the newly designed imputation function works well. The mean execution
time to generate one set of multiple imputed data sets was with 8.40 seconds considerably short.

Table 1: Monte Carlo Statistics of the First Simulation Setting Relying on a Random Intercept
Model.

β0 β1 σ

Q 1.000 0.750 0.300

Q̂ 1.050 0.751 0.304
SDQ̂ 0.097 0.095 0.150

B −0.053 −0.002 −0.003
CR 0.945 0.950 –

3.2 Simulation 2: Random Slope Model

In a further Monte Carlo study, we specify a model that includes–besides a random intercept–
also a random slope. We determine that the binary variable y depends on one single individual
level predictor x only. The corresponding data-generating process can be denoted as follows:

P (y = 1 | x) = invlogit(β0 + u0 + (β1 + u1)x)

β0 = 1

β1 = 0.75

σ0 = 0.3

σ1 = 0.2

u0 ∼ N(0, σ0)

u1 ∼ N(0, σ1)

x = N(0, 1).
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Table 2 shows the results of the conducted simulations. In summary, we find that the estimated
parameters do not remarkably differ from the true model parameters. The standard errors of
the parameter estimates for β1, β2, σ0, and σ1 are reasonable. Only the standard error of the
correlation ρ between the two random effects u0 and u1 seems to be out of range. However, this
result should not really surprise us given that in every run only a small sample is drawn from the
whole population. The coverage rates indicate that the imputation function produces feasible
results. In average one imputation round took 24.82 seconds–which we assess as being fairly
fast. Overall, we can conclude that also for this model specification our imputation function
delivers feasible results.

Table 2: Monte Carlo Statistics of the Second Simulation Setting Relying on a Random Intercepts
and Slopes model.

β0 β1 σ0 σ1 ρ

Q 1.000 0.700 0.300 0.200 0.000

Q̂ 0.965 0.717 0.270 0.208 −0.016
SDQ̂ 0.096 0.100 0.025 0.148 0.615

B 0.035 −0.017 0.030 −0.008 0.016
CR 0.895 0.950 – – –

Note. ρ denotes the correlation between the two random effects considered.

4 Conclusion

This paper introduces a univariate imputation function for binary multilevel data for the R pack-
age mice. To yield reasonable imputations, the function fits a mixed-effects logistic regression
model. For this purpose, it employs the lmer function of the R package lme4. By carrying out
two different Monte Carlo simulation studies, we have shown that the newly designed function
works fine within a random intercepts and slopes model framework.

To prove the usefulness of the introduced imputation model, some further issues have to be
addressed. First, the general question whether it is worth to include multilevel components
into the imputation procedure must be tackled. Comparing models with and without random
effects might shed light on this question. A one-level imputation method that has proven to
work well with hierarchical data is the method of predictive mean matching. The method
relies on a Bayesian normal model and replaces missing values from the distribution of actually
observed values (Heitjan & Little, 1991). Several studies have shown that the method preserves
observed hierarchical data structures quite well (Yu et al., 2007). Thus, to further evaluate the
necessity of an imputation function for binary multilevel data, both imputation methods should
be compared.

To demonstrate its value, in a second step, the newly designed imputation function should
be applied to real data. Studying school and student characteristics is ideally suited for such a
project. For example, a promising research question in this context is whether or not in Germany
the aspiration of students concerning their educational attainment is affected by their migration
background. The NEPS provides–among many other things–panel data on students in Grade 9
that will help find answers to this question. However, this remains a task for future work.
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