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Making Sense of Missing Answers in Competence Tests

Abstract

The paper discusses how to understand, and cope with, missing answers in competence tests.
Starting point is the insight that missing answers in competence tests are not missing values
in a normal sense (which hide sensible ‘true values’) but need an interpretation and evaluation.
The paper then distinguishes two types of missing answers: A person is not able or motivated
to produce a correct answer (type 1), or there was not enough time to produce a correct answer
(type 2).

It is argued that, if items are not of a multiple-choice type, missing answers of type 1 should be
evaluated as wrong answers. It is shown that this does not contradict using a Rasch model for
the construction of ability values and, in particular, does not lead to ‘biased estimates’.

How to cope with missing answers of type 2 depends on which quantities one intends to estimate.
Presupposing a standard Rasch model, missing answers of type 2 can be ignored when estimating
item parameters. It is shown how this can be done with a conditional likelihood.

With respect to ability values, it depends on whether one is interested in the ability to produce
correct answers in the given time limit, or one intends to estimate ability values for situations
without time restrictions. In the former case, missing answers of type 2 should be evaluated in
the same way as missing answers of type 1.

Given the latter intention, one needs to estimate a counterfactual score distribution for situations
without time restrictions. The paper considers one possible estimation method that assumes
observed numbers of correct and wrong responses being possibly censored observations, allowing
one to use a two-dimensional Kaplan-Meier procedure. The estimated score distribution can then
be used for multiple imputations.

Finally, the paper illustrates the discussed methods with NEPS data on math competencies of
5th grade pupils.

Keywords

Competence tests, Rasch models, missing answers, imputation methods
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This paper aims to contribute to the discussion about missing answers in competence tests. The
discussion is restricted to tests consisting of binary items providing three possible responses: a
correct answer, a wrong answer, or no answer. I assume throughout that missing answers are
not missing by design (due to not administered items).

1. How to think of missing answers?

It is important to realize that missing answers in a competence test are not missing values in a
usual sense. In the usual sense, missing values “hide true values that are meaningful for analysis”
(Little & Rubin 2002: 8). In case of a missing answer in a competence test, one cannot assume
that there is an unknown ‘true answer’. Missing answers belong to a separate category, different
from wrong and correct answers. Missing answers must be interpreted and evaluated in order
to establish a relationship with abilities.

How to interpret missing answers depends on the kind of item (question, task). As mentioned,
I presuppose items allowing three responses: a correct answer, a wrong answer, or no answer.
One can think of three causes leading a person to omit an answer:

a) The person does not answer a question because she has not enough time to consider the
question and produce an answer.

b) The person is not able to provide a presumably correct answer, and therefore prefers to give
no answer.

c) The person is not sufficiently motivated to produce an answer.

If the questions in a test should be answered in a prescribed sequential order, one can identify,
with some confidence, missing answers of the first kind as missing answers to “not reached” items
(Lord 1974: 248). Missing answers which are not of this kind can be interpreted in the second or
third sense. A clear distinction is not possible. In order to make sense of a competence test, one
has to think of abilities that participants of the test are willing to show in their responses. Their
motivation, therefore, must be viewed as an integral part of the ability that can be assessed by
the test.

So there only remains a rough distinction between two kinds of missing answers: Missing answers
expressing that a person is not able or motivated to produce a possibly correct answer, and
missing answers due to the fact that there was not enough time to consider the question and
produce an answer. In the following, I speak, respectively, of missing answers of type 1 and
missing answers of type 2.

Notation

m is the number of items, n is the number of persons. Variables Mj and Xj (for j = 1, . . . ,m)
represent person’s responses. Xj = 1 if the answer is correct, Xj = 0 if the answer is wrong. Mj

can take the following values:

Mj =











0 if Xj = 0 or Xj = 1

1 if there is a missing answer of type 1

2 if there is a missing answer of type 2

Observed values of the variables will be denoted by xij and mij, respectively. Note: Xj is
undefined if Mj > 0. Consequently, xij is undefined and cannot be used if mij > 0.
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2. Reference to a scaling model

How to deal with missing answers also depends on the operationalization of the ability that the
test is intended to assess. Such operationalizations are often defined by a scaling model. Here I
refer to a Rasch model. Using variables X1, . . . ,Xm, representing m binary items, having values
xj ∈ {0, 1},

1 the model has the form

Pr(X1=x1, . . . ,Xm=xm | C=c; δ) ≈

m
∏

j=1

exp(c− δj)
xj

1 + exp(c− δj)
(1)

δ := (δ1, . . . , δm) is the vector of item parameters, c is the value of a variable, C, that is to be
constructed as a quantification of competencies (= abilities for correctly responding to the given
items).

Scaling versus explanation

I stress that the Rasch model is a model for the construction of a variable, C, intended to rep-
resent abilities that can be assessed by the given test items (even if considered as a sample from
a larger set of items). The word ‘construction’ is to be understood in contrast to ‘description’
– of facts existing independently of the test and the scaling model. Changing the test items,
or changing the scaling model, will lead to different ‘estimates’ of abilities. In fact, the word
‘estimation’ is ambiguous in the present context. While one can sensibly speak of estimating the
parameters of a scaling model, one cannot say that values of C are estimates of ability values
which exist in some sense independently of the test and the scaling model.

Referring to the observable variables X1, . . . ,Xm, one can also think of an explanatory model.
That would be a model that considers X1, . . . ,Xm as dependent variables and makes their
distribution dependent on values of other observable variables which can be interpreted as rep-
resenting conditions of processes generating the abilities to be assessed (e.g., age, sex, family
background, actual testing conditions). The Rasch model is not an explanatory model. Not just
because C is not an observable variable, but because C is derived from the variables X1, . . . ,Xm.
Of course, calling C a ‘latent variable’ cannot change this logical relationship.2

That C is derived from X1, . . . ,Xm has further consequences. Referring to the Rasch model,
this entails that there is a one-to-one relationship between values of C and values of a variable S
representing a person’s total number of correct answers (s =

∑

j I[xj=1]). Now consider what
the Rasch model assumes for a single item:

Pr(Xj=1 | C=c; δj) ≈
exp(c− δj)

1 + exp(c− δj)
(2)

This is often interpreted in the following way: The probability of a correct answer to item j
depends positively on the ability value c, and negatively on the item parameter δj . While this is
true in a formal sense, the referenced probability has no operational meaning. In order to better
understand the meaning of (2), one can make use of the correspondence between C and S. This
shows that the probability defined in (2) relates to all persons belonging to a corresponding score
group, say s. For example, the statement Pr(Xj =1 | S = s; δj) = 0.6 would mean that about
60% of the persons belonging to score group s will give a correct answer to item j. In a sense,
one might also say: for a person who is able to correctly answer s of m items, the probability is
0.6 that item j belongs to these s items.

1For ease of notation, these are the same variable names as used above for representing valid responses; however,
here the variables serve to formulate a model. The intended meaning will become clear from the context.
2For an understanding of the notion of ‘latent variables’ see Rohwer & Pötter 2002: 216-226.
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3. Can missing answers be ignored?

Using the Rasch model (1), one has to estimate the item parameters, δj , and, for each score
group s, a value of C. It seems evident that missing answers cannot be ignored when estimating
values of C. Another question, to be discussed in the present section, concerns ignoring missing
answers in the estimation of item parameters.

Consider a person i. Let Vi := {j | mij = 0} and Ui := {j | mij > 0}. i’s contribution to the
likelihood of the data can be written as a product of two terms:

∏

j∈Vi

Pr(Xj=xij | ci, δj)
∏

j∈Ui

Pr(Mj=mij | ci, δj , φ)

Ignoring missing answers means that only the first term is used for parameter estimation. This
could be justified if the second term does not depend on parameters occurring in the first term.

This cannot, in general, be assumed for missing answers of type 1. Whether a person omits an
answer to an item that she has considered will normally depend both on the kind of item and
on her ability (see also Lord 1974: 250-1).

The situation is different for missing answers of type 2. Given that items are presented in a
random order, one can reasonably assume that missing answers of type 2 do not depend on item
parameters. But do they depend on person’s abilities? Here it is important how we understand
‘ability’. There are two possibilities:

a) One is interested in the ability to produce correct answers under the given time restriction.

b) One is interested in the ability to produce correct answers in a situation without time re-
strictions.

In the first case, missing answers of type 2 obviously depend on ability and cannot be ignored.
Whether the second understanding can be used to justify ignoring missing answers will be
discussed in Section 7.

4. The scaling problem with missing answers

Given that missing answers cannot be ignored, the question is how such answers should be taken
into account when estimating the parameters of the scaling model. Is there some way to impute
valid responses instead of the missing answers? This would require to use probabilities having
the form

Pr(Xj=1 |Mj > 0 [, further conditions]) (3)

However, for the time being these probabilities are undefined.3 Therefore, before one can think
about how to estimate such probabilities, they need a definition.

One might think that the Rasch model could be used to derive probabilities having the form (3)
by using the following definition:

Pr(Xj=1 |Mj> 0, C=c; δj) :=
exp(c− δj)

1 + exp(c− δj)
(4)

However, the presupposed ability level, c, is not available if there are missing answers. A person’s

3This has to be stressed because in the literature it is often assumed that such probabilities have a clear meaning
just from the beginning. This is assumed, in particular, by writers who proposed to apply Rubin’s theory of
missing values to the estimation of IRT models; see, e.g., Mislevy & Wu 1988, 1996.
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ability level, as operationalized by the Rasch model, depends on her number of correct answers,
but this number is not available until one has decided about the evaluation of her missing
answers.

In fact, it is not evident how to make any sense of probabilities having the form (3). Consider
the question: What might be a person’s response if she would have answered to a question
which she, in fact, left unanswered? Since this counterfactual question has no sensible meaning,
probabilities having the form (3) cannot be estimated in any clear sense of ‘estimation’; and
there only remain two ways to deal with missing answers:

a) To base probabilities having the form (3) on an explicit evaluation of the missing answers.

b) To hypothetically construct a situation in which a person can sensibly be assumed to provide
an answer to an item that she left unanswered.

In the following, I use the first approach in the discussion of missing answers of type 1 (‘omitted’),
and the second approach as one possibility to cope with missing answers of type 2 (‘not reached’).

5. Missing answers of type 1 (‘omitted’)

I begin with the question how to deal with missing answers of type 1. This depends on the test
item. There are basically two kinds depending on whether a correct answer can, or cannot, be
produced by guessing.4

If correct answers cannot be guessed, a missing answer should be evaluated as a wrong answer.
The argument simply is that we are interested in person’s abilities to produce correct answers.
Of course, the participants of the test should be informed about this treatment of their miss-
ing answers, and this information should be considered as being an essential part of the test
conditions.

Note that evaluating a missing answer as a wrong answer does not contradict the Rasch model
because this model does not entail anything about the meaning of missing answers. Consider a
person i with a missing answer to item j. The Rasch model entails

for all s > 0 : Pr(Xj=1 | S=s; δj) > 0 (5)

This might suggest to think that also person i has a positive probability for correctly answering
item j, contradicting the treatment of person i’s missing answer as a wrong answer. However,
as already noted in Section 2, the probability referred to in (5) does not relate to an individual
person but to a score group. The statement (5) simply says that, in a sufficiently large sample,
each score group (except s = 0) will contain at least one person who provides a correct answer
to item j.

Multiple-choice items

The situation is different for multiple-choice items where there is some positive probability for
guessing a correct answer.5 Assume that, for item j, there is a positive probability, say πj, for
guessing a correct answer. It seems sensible, then, to substitute missing answers by wrong and

4Duchhardt & Gerdes (2012: 5) report that, of the 24 math items in the NEPS SC3 data, 13 have a multiple-
choice form, 11 require a short constructed response. Unfortunately, the different types cannot be identified in
the scientific use file.
5This is often presupposed by writers criticizing the evaluation of missing answers as wrong answers; e.g., Lord
1983, Mislevy & Wu 1996: 20.
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correct answers according to these probabilities. As before, the participants of the test should
be informed about this treatment of their missing answers; so they have the choice between
guessing on their own or leaving this to the data user. And again, this treatment of missing
answers should be considered as being an integral part of the test conditions. This can be
justified with the following argument: Using multiple-choice questions in a competence test
presupposes that being able to guess an answer is an essential part of the ability to be assessed.

A different approach proposed by Lord

Referring to the discussion in Section 4, the above proposal is based on the definition

Pr(Xj=1 |Mj=1) := πj (6)

where πj > 0 if an item is of a multiple-choice type, and πj = 0 if it is not possible to produce
a correct answer by guessing. Lord (1974: 249) has criticized this evaluation of missing answers
and proposed a different approach. His critique presupposes that one should start from (4), so
that the above proposal seems to entail

Pr(Xj=1 |Mj> 0, C=c; δj) =
exp(c− δj)

1 + exp(c− δj)
= πj

This obviously is not sensible because it would imply that all persons omitting the same item
have the same ability level. However, the critique does not apply to definition (6) which does
not presuppose that (4) is meaningful.

Based on the view that one should start from (4), Lord (1974: 251) proposed a different approach
(see also Mislevy & Wu 1996: 19-20). He proposed to consider a missing answer as ‘fractionally
correct’ and use the following pseudo likelihood:

n
∏

i=1

m
∏

j=1

Pr(Xj=1 | ci, δj)
uij Pr(Xj=1 | ci, δj)

1−uij (7)

where uij = xij if mij = 0, and uij = πj if mij = 1. Note that this is not a likelihood in the
usual sense because it is not based on a model for the occurrence of missing answers. In fact, it
is a proposal for the evaluation of missing answers.

This also shows up in the calculation of ability values. Given estimates of the item parameters,
δ̂j , such values can be calculated by solving the equation

m
∑

j=1

exp(ci − δ̂j)

1 + exp(ci − δ̂j)
=

∑

j∈Vi

xij +
∑

j∈Ui

πj (8)

which is implied by the first-order conditions for the maximization of (7). The right-hand side
is the total number of correctly answered items plus the value of ‘fractionally correct’ items. In
this respect, Lord’s proposal is similar to the above mentioned approach where missing answers
are substituted by correct and wrong answers, randomly drawn with probabilities πj and 1−πj,
respectively. The expectation of the total-right score then equals the right-hand side of (8).

6. Simulation studies

The methods for dealing with missing answers of type 1 discussed in the previous section are
based on evaluations to be considered as being part of the test conditions. In other words,
these evaluations belong to the operationalization of the ability to be assessed by the test. It
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would not make sense, therefore, to think of the resulting ability values as being possibly biased
estimates.

In order to stress this point, I briefly consider simulation studies that have been proposed to
investigate strategies for coping with missing answers. Most of these simulation studies (e.g.,
DeAyala, Plake & Impara 2001, Finch 2008, Culbertson 2011) proceed as follows:

a) One presupposes a scaling model with known item parameters for, say, m items. This can
be a Rasch model as specified in (1), but also used are logistic models with two or three
parameters.

b) One assumes a set of individuals with a known distribution of the variable C. This allows
generating individual values ci for i = 1, . . . , n.

c) One generates for each individual a response pattern (xi1, . . . , xim) with xij ∈ {0, 1}. There
are different ways to do this. For example, DeAyala, Plake & Impara (2001) begin with the
calculation of probabilities

pij := Pr(Xj=1 | C=ci; parameters for item j) (9)

They then compare these probabilities with random numbers equally distributed in the
interval [0, 1]. “If the random number was less than or equal to the probability of a correct
response, the response was coded as “1” for correct, “0” otherwise.” (p. 218)

d) One specifies a mechanism for the generation of missing answers. This mechanism can be
made dependent on the item parameters and on values of C or the sum score of the already
generated xij values.

e) One uses the mechanism to mark some of the previously generated xij values as missing
answers.

The finally generated data set can be used, in combination with different strategies for the
treatment of missing answers, to estimate values of the item parameters and/or the distribution
of the variable C, and these estimates can be compared with their presupposed values.

What can be learned from such simulation studies? In particular, can such studies show that
certain strategies to take into account missing answers produce more or less biased estimates?
As an example, I consider the strategy to treat missing answers as wrong answers. Several
authors have claimed that their simulations showed that this strategy, more than other ones,
produced biased estimates.6 However, one can easily see that this result is simply a consequence
of a specific way of generating missing answers in the simulation.

Remember how the simulated data are generated. One first uses (9) to create a data set without
missing answers. Then, a selected subset of both correct and wrong responses is marked as
missing. Obviously, if one subsequently treats all missing answers as wrong answers, estimates
will be biased.

However, other ways to generate missing answers will lead to different results. For example,
one could mark only wrong answers as missing, and then all strategies which do not treat
missing answers as wrong answers would produce biased results. In general, when a simulation
study reveals a bias, this only reflects a discrepancy between the method of generating missing
answers and the treatment of such answers when estimating model parameters or calculating
ability values.

There is, however, a more fundamental shortcoming. By assuming a given distribution of ability
values, in accord with the presupposed scaling model, the studies neglect the primarily important

6E.g., DeAyala, Plake & Impara 2001, Finch 2008, Culbertson 2011; see also Pohl and Carstensen 2012: 8-9.
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question: How to establish a relationship between missing answers and abilities? Instead of
addressing this question as part of the operationalization of the abilities to be assessed by the
test, the studies simply assume that missing answers are irrelevant for the definition of abilities.

7. Missing answers of type 2 (‘not reached’)

I refer to the two understandings of ‘ability’ distinguished in Section 3. If one is interested in
person’s abilities to produce correct answers in the given time limit, missing answers of type 2
should be treated in the same way as missing answers of type 1. As was discussed in Section 5,
this further depends on whether the items are of a multiple-choice type or not.

In the literature, several writers prefer an understanding of ‘ability’ in the second sense where
time restrictions are hypothetically ignored (e.g., Lord 1974, Mislevy & Wu 1996: 12). In the
following, I presuppose this understanding.

I also assume that missing answers of type 1 have been substituted in some way, so that all
remaining missing answers are of type 2.

Estimation of item parameters

As was mentioned in Section 3, if items are presented in a random order, one can reasonably
assume that missing answers of type 2 do not depend on item parameters. Such missing answers
could then be ignored when estimating item parameters with a conditional likelihood.

But note that the argument does not apply when item parameters and person’s ability values
are estimated simultaneously (e.g., marginal likelihood estimation of a Rasch model with a
random term). I therefore consider, in Section 8, an alternative approach that is not restricted
to conditional likelihood estimation.

Conditional likelihood estimation of item parameters

In the present subsection, to ease notation, I assume that xij = 2 if mij = 2. The conditioning
uses variables S0, S1, and S2 having values defined, respectively, by

wi :=
∑

j
I[xij=0], si :=

∑

j
I[xij=1], ui :=

∑

j
I[xij=2]

Since all missing answers are of type 2, wi+si+ui = m. Person i’s contribution to the conditional
likelihood can then be written as

Lconi = Pr(X1=xi1, . . . ,Xm=xim | ci, δ, S
0=wi, S

1=si, S
2=ui)

=
Pr(X1=xi1, . . . ,Xm=xim, S0=wi, S

1=si, S
2=ui | ci, δ)

Pr(S0=wi, S1=si, S2=ui | ci, δ)

=
Pr(X1=xi1, . . . ,Xm=xim | ci, δ)

∑

x∈D(wi,si)
Pr(X1=x1, . . . ,Xm=xm | ci, δ)

where D(wi, si) denotes the set

{x = (x1, . . . , xm) | xj ∈ {0, 1, 2},ΣjI[xj=0] = wi,ΣjI[xj=1] = si}
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When ignoring missing answers, this can be written as

Lconi =

∏

j∈Vi

exp(ci−δj)
xij

1+exp(ci−δj)
∑

x∈D(wi,si)

∏

j∈Vi

exp(ci−δj)
xj

1+exp(ci−δj)

=

∏

j∈Vi
exp(ci − δj)

xij

∑

x∈D(wi,si)

∏

j∈Vi
exp(ci − δj)xj

=
exp(si ci)

∏

j∈Vi
exp(−δj xij)

∑

x∈D(wi,si)
exp(si ci)

∏

j∈Vi
exp(−δj xj)

=

∏

j∈Vi
exp(−δj xij)

∑

x∈D(wi,si)

∏

j∈Vi
exp(−δj xj)

If missing answers of type 2 occur as contiguous blocks at the end of the response patterns, this
simplifies to

Lconi =

∏vi
j=1 exp(−δj xij)

∑

x∈D
vi
si

∏vi
j=1 exp(−δj xj)

(10)

where vi := wi + si and D
vi
si

is the set of patterns of length vi containing si ones.

Estimation of ability values

Having estimated item parameters, one could estimate ability values by solving the equation
m
∑

j=1

exp(ci − δ̂j)

1 + exp(ci − δ̂j)
= s∗i (11)

which is implied by the first-order conditions for maximizing the likelihood of the Rasch model
(1). s∗i denotes person i’s number of correct answers. If there were no missing answers of type
2 (and all missing answers of type 1 have been substituted in some way), one could use the
observed value si. On the other hand, if there are missing answers of type 2, one cannot use
the observed si, but would need an estimate of the number of correct answers the person might
have produced if she had enough time to deal with all items.

Alternatively, one could again ignore missing answers of type 2 and use

∑

j∈Vi

exp(c∗i − δ̂j)

1 + exp(c∗i − δ̂j)
= s∗i (12)

where Vi is the index set of person i’s valid answers. Of course, implicitly also this approach
entails an estimate of a person’s number of correct answers for a hypothetical situation without
time restrictions.

8. Using estimated score distributions

I assume that one intends to explicitly construct ability values which do not entail time re-
strictions. One then has to consider a hypothetical question: What would be the number of
correct answers if a person had enough time to deal with all items? In other words, one has to
estimate the distribution of a variable, say S∗, that represents the scores (= number of correct
answers) in a counterfactual situation without time restrictions. In this section, I first describe
a possible estimation procedure for S∗. I then discuss how the distribution of S∗ can be used
for the estimation of item parameters and ability values.
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Box 8.1 Algorithm for the estimation of the score distribution.

f(s,w) := proportion of persons with si = s and wi = w

b(s,w) := {(k, l) | s ≤ k ≤ m−w,w ≤ l ≤ m−k, (k 6=s or l 6=w)}

for s = 0, . . . ,m− 1

for w = 0, . . . ,m− s− 1

F (s,w)←
∑

(k,l)∈b(s,w) f(k, l)

for all (k, l) ∈ b(s,w) : f(k, l)← f(k, l) + f(s,w) f(k,l)
F (s,w)

for s = 0, . . . ,m : Pr(S∗=s)← f(s,m−s)

Estimation of the score distribution

Estimation of the distribution of S∗ should be based on the observed values si and wi. I assume
that missing answers of type 1 have been substituted in some way. The number of missing
answers of type 2 is then given by m− vi where vi = si + wi is the number of valid answers.

To explain the approach, I refer to the variable (S∗,W ∗) where W ∗ := m − S∗. The basic
idea is to consider (si, wi) as an exact observation of (S∗,W ∗) if si +wi = m, and as a censored
observation if si+wi < m. In order to take into account censored observations for the estimation
of the distribution of (S∗,W ∗), one can use a two-dimensional Kaplan-Meier procedure. Box
8.1 shows the algorithm for our application.7

Since W ∗ = m− S∗, it finally suffices to consider the distribution of S∗. This distribution can
be used for two purposes. For each person i, one can calculate a conditional expectation

E(S∗ | S∗ ≥ si,W
∗ ≥ wi) = E(S∗ | si ≤ S∗ ≤ m−wi)

=

∑

si≤s≤m−wi
sPr(S∗ = s)

∑

si≤s≤m−wi
Pr(S∗ = s)

These expectations equal the observed scores, si, if there are no missing answers of type 2. As
a further application, one can use the conditional distributions Pr(S∗ | si ≤ S∗ ≤ m−wi) for
multiple imputations. This will be discussed next.

Estimation of item parameters

The procedure is shown in Box 8.2. Imputations are based on the estimated score distribution,
conditional on known numbers of correct and wrong answers. The number of imputation steps is

made dependent on the convergence of the sequence δ̄
(k)
j for k = 1, 2, . . . For checking convergence

one can use, for example,

1

m
maxj

{
∣

∣δ̄
(k)
j − δ̄

(k−1)
j

∣

∣

}

≤ ǫ

where ǫ is a small number.

7For a discussion of this, and similar, procedures see Pötter 2008, esp. chap. 8.
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Box 8.2 Algorithm for the estimation of item parameters.

(1) k ← 0

(2) k ← k + 1

(3) for all i with si + wi < m:

randomly draw a value s
(k)
i from the conditional distribution

Pr(S∗ | si ≤ S∗ ≤ m−wi);

randomly select s
(k)
i −si of the m−si−wi missing xij-values

and set these values to 1; set the remaining missing values to 0.

(4) estimate δ
(k)
1 , . . . , δ

(k)
m with current (xij)

(5) for j = 1, . . . ,m: δ̄
(k)
j ←

∑k
l=1 δ

(l)
j /k

(6) check whether to stop the iterations, otherwise continue with (2).

Estimation of ability values

Having estimated item parameters, one can calculate, for each score group s = 1, . . . ,m− 1, an
ability value c(s), by solving the equation

m
∑

j=1

exp(c(s)− δ̂j)

1 + exp(c(s)− δ̂j)
= s (13)

Persons without missing answers can then immediately be given the ability value c(si). If there
are missing answers, one can use a mean value

c+(si, wi) :=

∑

si≤s≤m−wi
c(s) Pr(S∗ = s)

∑

si≤s≤m−wi
Pr(S∗ = s)

(14)

based on the estimated score distribution, conditional on known numbers of correct and wrong
answers.

9. Illustration with NEPS data

To illustrate the discussion, I use NEPS data on math competencies of 5th grade pupils.8 I use
the data file SC3 xTargetCompetencies D 1-0-0.sav that is part of the SPSS version of the
SC3 SUF.9 The file contains information about 5208 pupils who participated in the competence
tests. There are 24 items for math competencies. I use 23 of these items which are binary. Table
9.1 shows the distribution of their values.

8Acknowledgement: This paper uses data from the National Educational Panel Study (NEPS): Starting Cohort
3 – 5th grade (From Lower to Secondary School), doi:10.5157/NEPS:SC3:1.0.0. The NEPS data collection is
part of the Framework Programme for the Promotion of Empirical Educational Research, funded by the German
Federal Ministry of Education and Research and supported by the Federal States. For a general introduction to
the NEPS, see Blossfeld, Roßbach and von Maurice (eds.) 2012.
9For a description of the SC3 SUF, see Skopek, Pink and Bela (2012). Additional information about the
mathematics test is given by Duchhardt and Gerdes (2012).
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Table 9.1 Valid answers and missing values in 23 items for math competencies.

Item Variable -97 -95 -94 0 1

X1 MAG5D041 66 17 14 2166 2945
X2 MAG5Q291 232 43 14 1442 3477
X3 MAG5Q292 256 37 14 1645 3256
X4 MAG5V271 436 4 14 3264 1490
X5 MAG5R171 179 11 16 2411 2591
X6 MAG5Q231 609 291 16 2515 1777
X7 MAG5Q301 116 93 16 3065 1918
X8 MAG5Q221 154 30 17 864 4143
X9 MAG5D051 84 4 17 562 4541
X10 MAG5D052 81 127 17 1986 2997
X11 MAG5Q14S 584 127 18 1553 2926
X12 MAG5Q121 431 10 21 3695 1051
X13 MAG5R101 130 69 23 2366 2620
X14 MAG5R201 115 6 28 1352 3707
X15 MAG5Q131 237 67 38 1131 3735
X16 MAG5D02S 318 154 46 656 4034
X17 MAG5D023 374 45 53 1923 2813
X18 MAG5V024 727 228 67 1920 2266
X19 MAG5R251 360 13 98 2571 2166
X20 MAG5V321 548 58 205 2997 1400
X21 MAG5V071 70 29 223 501 4385
X22 MAG5R191 47 217 284 2057 2603
X23 MAG5V091 0 23 465 2669 2051

Table 9.2 Crosstabulation of of number of missing values of type 1 (rows) and missing
values of type 2 (columns).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 19 23

0 2076 24 14 5 27 13 5 4 2 3 1 1 2 1 1 14 2193
1 1107 34 11 7 19 4 2 2 1 1 1 1 1 1191
2 596 20 7 2 23 5 4 4 2 1 664
3 369 25 10 4 12 3 2 1 2 1 1 430
4 232 16 6 6 2 1 2 265
5 163 20 6 9 3 1 202
6 80 10 2 7 1 2 102
7 65 9 2 2 78
8 22 5 1 28
9 11 6 17

10 7 4 1 1 13
11 5 3 1 9
12 3 1 4
13 5 1 1 7
14 1 2 3
16 1 1
17 1 1

4743 181 61 18 107 31 14 7 8 10 5 2 3 1 1 2 14 5208

There are three types of missing values: -97 (refused), -95 (implausible value), and -94 (not
reached). Based on the discussion in Section 1, I treat -95 and -97 as missing answers of type 1,
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Table 9.3 Comparison of item parameters, estimated with a conditional
likelihood (values are standardized such that Σjδj = 0).

all missing answers missing answers of missing answers of
Item treated as wrong type 2 ignored type 2 imputed

1 -0.0776 -0.0402 -0.0375
2 -0.6103 -0.5749 -0.5705
3 -0.3823 -0.3469 -0.3440
4 1.3648 1.3978 1.3908
5 0.2612 0.2957 0.2952
6 1.0555 1.0889 1.0826
7 0.9116 0.9453 0.9408
8 -1.4083 -1.3758 -1.3638
9 -2.0634 -2.0328 -2.0192

10 -0.1266 -0.0927 -0.0919
11 -0.0580 -0.0241 -0.0247
12 1.9104 1.9403 1.9272
13 0.2338 0.2653 0.2622
14 -0.8624 -0.8369 -0.8289
15 -0.8944 -0.8749 -0.8664
16 -1.2603 -1.2543 -1.2350
17 0.0504 0.0699 0.0667
18 0.5706 0.5885 0.5766
19 0.6673 0.6746 0.6587
20 1.4681 1.4502 1.3730
21 -1.7791 -2.0777 -1.9251
22 0.2500 0.1625 0.1501
23 0.7793 0.6518 0.5831

and -94 as missing answers of type 2.10

Table 9.2 shows a crosstabulation of the numbers of the two types of missing answers. There
are 14 persons having no valid response at all. These persons will be omitted in subsequent
calculations. 451 of the remaining 5194 persons have at least one missing answer of type 2.

9.1 Estimation of item parameters

If one is interested in the ability to produce correct answers in the given time limit, all missing
answers should be evaluated as wrong answers. Alternatively, if time restrictions should be
ignored, one could ignore missing answers of type 2 as was discussed in Section 7. Corresponding
item parameters, estimated with a conditional likelihood, are shown in Table 9.3. As also seen
from Figure 9.1, the estimates are highly correlated.

This is due to the fact that the number of missing answers of type 2 is small (less than 10%).
Note that the item parameters of a Rasch model are basically a nonlinear transformation of the
proportions of wrong answers (often interpreted as ‘item difficulties’). This is shown in Figure
9.2. Consequently, ignoring missing answers makes items ‘less difficult’. However, due to the
standardization Σjδj = 0, this cannot immediately be seen from the values in Table 9.3.

10This is done in order to illustrate the discussed methods. Actually, it is not clear whether the NEPS data allow
identifying missing answers of type 2 in a strict sense.
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Fig. 9.1 Scatterplot of item parameters, also shown a linear regression line.
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Fig. 9.2 Scatterplot of proportion of wrong answers and item parameters, based on
a Rasch model that treats all missing answers as wrong.

9.2 Estimation of ability values

Having available estimates of item parameters, ability values can be calculated by solving equa-
tion (13) where s is a person’s total number of correct answers For each sum score s, one gets
an ability score c(s).11 Note that the calculation requires 0 < s < m.12

Table 9.4 compares the ability scores for the two ways of treating missing answers. As also seen
from Figure 9.3, the estimates are almost identical.

If all missing answers are evaluated as wrong answers, these ability values can immediately be
used for individual assignment. If missing answers of type 2 are ignored in the calculation of

11If some, or all, items have a multiple-choice form, one could also use the formula (8) which was proposed by
Lord. However, this cannot be illustrated here because the presently available SUF does not allow to identify
multiple-choice items.
12In order to calculate ability scores also for persons having all items right, or wrong, one could use weighted
likelihood estimates as proposed by Warm (1989).
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Table 9.4 Ability scores calculated with equation (13) using the item
parameters in Table 9.3.

all missing answers missing answers of missing answers of
S treated as wrong type 2 ignored type 2 imputed

1 -3.4870 -3.5517 -3.5265
2 -2.6937 -2.7518 -2.7314
3 -2.1874 -2.2397 -2.2237
4 -1.7979 -1.8453 -1.8332
5 -1.4718 -1.5153 -1.5066
6 -1.1851 -1.2254 -1.2196
7 -0.9245 -0.9623 -0.9592
8 -0.6820 -0.7179 -0.7171
9 -0.4521 -0.4866 -0.4879

10 -0.2306 -0.2641 -0.2672
11 -0.0141 -0.0469 -0.0517
12 0.2002 0.1680 0.1615
13 0.4152 0.3833 0.3754
14 0.6338 0.6022 0.5929
15 0.8594 0.8280 0.8174
16 1.0962 1.0649 1.0530
17 1.3495 1.3184 1.3053
18 1.6278 1.5969 1.5826
19 1.9440 1.9134 1.8980
20 2.3224 2.2922 2.2758
21 2.8167 2.7870 2.7696
22 3.5971 3.5681 3.5497

-4 -3 -2 -1 0 1 2 3 4
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-2

-1

0

1

2

3

4

all missing answers evaluated as wrong

type 2 missing answers ignored

Fig. 9.3 Scatterplot of ability scores calculated with equation (13) using the item
parameters in Table 9.3. Also shown is a linear regression line.

item parameters, one needs a further decision for the calculation of individual ability values.
There are two possibilities: (a) One treats missing answers of type 2 as wrong answers and then
can use formula (11), or (b) one ignores missing answers of type 2 and uses formula (12). The
second approach entails that one intends to ignore time restrictions. Unfortunately, this remains
implicit and without justification. As an explicit alternative, I therefore consider the approach
discussed in Section 8..
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Fig. 9.4 Distributions of sum scores (number of correct answers). Solid: observed,
dashed: estimated with the algorithm in Box 8.1.
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Fig. 9.5 Observed and estimated sum scores (number of correct answers) of 449
persons having at least one missing answer of type 2 and at least one correct answer.

9.3 Using estimated score distributions

I begin with the estimation of a score distribution with the algorithm depicted in Box 8.1. As
shown in Figure 9.4, there is a slight shift to higher sum scores. However, for the 449 persons
with at least one missing answer of type 2 (and at least one correct answer), the change is quite
remarkable, see Figure 9.5.
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Fig. 9.6 Scatterplot of item parameters, also shown a linear regression line.
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Fig. 9.7 Scatterplot of ability scores calculated with equation (13) using the item
parameters in Table 9.3. Also shown is a linear regression line.

Having available an estimate of the distribution of S∗, one can use the algorithm depicted in
Box 8.2 for the estimation of item parameters. The resulting estimates (after performing 10
iterations) are shown in Table 9.3. Obviously, one gets again quite similar values (see also
Figure 9.6).

Finally, one can calculate ability scores. Using equation (13), for each score group s one gets a
corresponding ability value c(s). As can be seen from Table 9.4 and Figure 9.7 they are very
similar to previously calculated values. However, when using formula (14), persons with missing
answers of type 2 get substantial higher ability values. This is illustrated in Figure 9.8.

Results are similar when missing values of type 2 are simply ignored. As seen by Figure 9.9,
ability values resulting, respectively, from (12) and (14) are highly correlated. Of course, both
kinds of values only relate to hypothetical test situations without any time restrictions.
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Fig. 9.8 Comparison of ability scores of 449 persons having at least one missing
answer of type 2 and at least one correct answer: c(si) calculated with (13), c+(si, wi)
calculated with (14).
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Fig. 9.9 Comparison of ability scores of 449 persons having at least one missing
answer of type 2 and at least one correct answer: c+(si, wi) calculated with (14); c∗i
calculated with (12).
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