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Selection, Choice and Causal Interpretations

Abstract

Invited by the National Educational Panel Study (NEPS), during the Winter 2011/12, I gave
a series of lectures about ‘Statistical methods in sociological research of education’. This text
comprises an elaboration of one of these lectures dealing with different kinds of selection prob-
lems. As a starting point, I distinguish between data-generating and fact-generating processes.
The term ‘data-generating process’ is used to refer to a process that generates data, that is,
information about already existing facts. In contrast, when referring to processes that generate
new facts (outcomes), I use the term ‘fact-generating process’. I argue that it is important
whether a selection problem concerns a data-generating or a fact-generating process. In the
first case, one should be concerned with possible bias. In the second case, one has to consider
the selection process as an integral part of the substantive process generating the outcome of
interest. In this paper, I am mainly concerned with selections that are part of fact-generating
processes. In the first section, I begin with distinguishing different kinds of selection problems,
and then consider situations in which a selection process creates a necessary precondition for an
outcome. In the second section, I consider selection processes that result from decisions of indi-
vidual or collective actors. I propose a definition of ‘choice variables’, and distinguish between
explanatory and evaluative choice models. In the third section, I discuss how to think of causal
effects of choice variables.

Keywords

selection, choice, causal interpretations, functional models, choice models, omitted confounder,
educational processes
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Invited by the National Educational Panel Study (NEPS), during the Winter 2011/12, I gave
a series of lectures about ‘Statistical methods in sociological research of education’. This text
comprises an elaboration of one of these lectures dealing with different kinds of selection prob-
lems.

As a starting point, I distinguish between data-generating and fact-generating processes. The
term ‘data-generating process’ is used to refer to a process that generates data, that is, informa-
tion about already existing facts. In contrast, when referring to processes that generate new facts
(outcomes), I use the term ‘fact-generating process’. As an example think of a learning frame in
which students can acquire capabilities of a specified kind, and assume that individual learning
results can be captured by values of a variable, say Y . One can firstly think of a fact-generating
process in which each student eventually acquires a particular capability. Afterwards, a data-
generating process can take place, that is, a process in which a researcher represents students’
capabilities by particular values of Y .

I argue that it is important whether a selection problem concerns a data-generating or a fact-
generating process. In the first case, one should be concerned with possible bias. In the second
case, one has to consider the selection process as an integral part of the substantive process
generating the outcome of interest.

In this paper, I am mainly concerned with selections that are part of fact-generating processes.
As a formal framework, I use functional models (see Rohwer (2010, 2012) for notations and
definitions). In the first section, I begin with distinguishing different kinds of selection problems,
and then consider situations in which a selection process creates a necessary precondition for
an outcome. I argue that one should distinguish between ‘selection problems’ and problems
resulting from omitted confounders. In the second section, I consider selection processes that
result from decisions of individual or collective actors. I propose a definition of ‘choice variables’,
and distinguish between explanatory and evaluative choice models. In the third section, I discuss
how to think of causal effects of choice variables, and I consider problems resulting from omitted
confounders.

1. Different kinds of selection

1. Distinguishing selection problems. I distinguish three situations where Y is a variable of
interest, and there is a further variable S which in some sense involves a selection.

a) S is a binary variable, and values of Y can be observed if S = 1, and cannot be observed
if S = 0. This can properly be called a ‘sample selection problem’ because S only concerns
the observability of Y but is not a causally relevant condition for Y . Here it is presupposed
that Y has a distribution that exists independently of S.

b) S is a binary variable, and S = 1 is a necessary precondition for Y to have a distribution.
For example, being employed (S = 1) is a necessary precondition for receiving a wage (Y ).

c) S can take two or more different values, and it is assumed that the distribution of Y causally
depends on the value of S. For example, values of S represent school types, and Y is a
measure of educational attainment.

In the first case (a), the selection concerns a data-generating process, and it is obvious that
one has to think about possible bias. In cases (b) and (c), however, the selection concerns a
fact-generating process, and it is not clear in which sense there might be a selection problem. In
the following, I begin with a very brief consideration of (a) and then focus on (b). The discussion
is continued in Section 2 where also (c) will be considered.

NEPS Working Paper No. 18, 2012 Page 3



Rohwer

2. Selection in data-generating processes. Sample selection problems can be conceptualized in
two ways. First, Y and S are statistical variables,1 say

(Y, S) : Ω −→ Y × {0, 1}

One knows the conditional distribution P[Y |S=1], but is interested in the unconditional distri-
bution P[Y ]. As an example, one can think that S is a response indicator in a survey: S=1 if
a sampled unit provides a value of Y , and S=0 otherwise.

Another framework uses random variables, say Ẏ and Ṡ. Ṡ is again a binary variable and
records whether a value of Ẏ can be observed. So it is assumed that one knows the conditional
distribution Pr[Ẏ |Ṡ = 1], but is interested in the unconditional distribution Pr[Ẏ ]. Of course,
the interest could also concern distributions of Ẏ (or Y in the first framework) which depend
on further covariates.

If Ṡ is independent of Ẏ , one can use Pr[Ẏ |Ṡ = 1] to estimate Pr[Ẏ ]. Problems occur if, and
because, Ṡ and Ẏ are correlated. This suggests to find another variable, say V̈ (often consisting
of several components), such that

Ṡ⊥⊥Ẏ | V̈ =v

is approximately true. This would allow one to use Pr[Ẏ |V̈ =v, Ṡ=1] to estimate Pr[Ẏ |V̈ =v].2

3. Selection as a necessary precondition. I now consider the case where the selection variable
represents a necessary precondition for values of the variable of interest. As an example, I take
Ẏ to represent the outcome of a university education, and Ṡ=1 if a person actually begins with
university studies, and Ṡ=0 otherwise. It is further assumed that Ẏ depends on a variable Ẍ
representing the level of academic performance the person has reached just before the selection
variable gets a particular value (the two dots indicate that this is an exogenous variable of the
model). A functional model could then be graphically depicted as follows:

Model 1.1

Ẏ

Ṡ

Ẍ --

??
�������*

�������*

The picture is possibly misleading, however, because it suggests that Ẏ has a distribution even
if Ṡ = 0. But, obviously, a process generating a value of Ẏ can only take place if Ṡ = 1. This
entails that there are two rules (functional relationships):

x −→ Pr(Ẏ =y|Ẍ=x, Ṡ=0) = 0 (1)

and

x −→ Pr(Ẏ =y|Ẍ=x, Ṡ=1) (2)

Nevertheless, both Ẍ and Ṡ are causally relevant for Ẏ . Referring to expectations of Ẏ , Ṡ can be
viewed as an event variable having the effect E(Ẏ |Ẍ=x, Ṡ=1) (see Rohwer 2012: 22f). Effects
of Ẍ can be defined, of course, only conditional on Ṡ=1:

E(Ẏ |Ẍ=x′′, Ṡ=1)− E(Ẏ |Ẍ=x′, Ṡ=1) (3)

1For a formal definition of statistical variables see Rohwer (2010: 2, or 2012: 3f).
2As introduced in Rohwer (2012), I use a single dot to indicate that a variable has a probability distribution
(given values of further variables), and I use two dots to indicate that a variable does not have an associated
distribution but simply serves as a placeholder for assuming specific values.
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Note that in this model there can be no interaction of Ẍ and Ṡ w.r.t. Ẏ .

4. Counterfactual and modal questions. Although Ṡ=1 is a necessary precondition for values of
Ẏ , one can ask hypothetical questions. Two forms of such questions must be distinguished:

a) Counterfactual questions presuppose that Ṡ already has taken a particular value. For exam-
ple: Given Ẍ=x and Ṡ=0, what value of Ẏ might be expected if Ṡ had taken the value 1
instead of 0 ? (The complementary question obviously has a trivial answer.)

b) Modal questions presuppose a situation where Ṡ has not already taken a particular value,
and a process that might generate a value of Ẏ has not yet started.

I will not discuss the counterfactual questions. To answer the modal questions, one can use the
rules (1) and (2), respectively. The selection variable Ṡ then only serves to distinguish the two
modal questions and does not provide any further information. (This will be further discussed
in Section 2.)

5. Is there a sample selection problem? The rule (1) can be established by referring to the
institutional framework without reference to sampled data. Numerically specified versions of the
rule (2) must be estimated from sampled data. However, as suggested by the rule’s formulation,
one can simply use the data for those students who actually began a university education (Ṡ=1).

Note that selection on Ṡ=1 has nothing to do with a sample selection problem. The condition
Ṡ = 1 simply determines the scope of the rule to be estimated. It is possible, of course, that
the available data are selective; for example, response rates can depend on Ẏ . There is then a
sample selection problem that leads to biased estimates of Pr(Ẏ =y|Ẍ=x, Ṡ=1). But this bias
is not due to conditioning on Ṡ=1, instead, its definition would presuppose this condition.

6. Consideration of omitted confounders. There is, however, another problem that must be
considered: the omission of possibly relevant confounding variables. This requires to refer to an
enlarged model that explicitly contains a further confounding variable. I use the following

Model 1.2

Z̈

Ẏ

Ṡ

Ẍ --

��
??

66

�������*

�������*

where Z̈ is a further variable on which Ṡ depends, e.g., an indicator of a person’s educational
aspiration. Moreover, it is assumed that also Ẏ depends on Z̈ entailing that Z̈ is a confounding
variable.

There is no problem if data are available for both Ẍ and Z̈. But now assume that data on
Z̈ are not available so that one can only estimate a reduced version of the model; in terms of
expectations:

E(Ẏ |Ẍ=x, Ṡ=1) =
∑

z
E(Ẏ |Ẍ=x, Ż=z, Ṡ=1)Pr(Ż=z|Ẍ=x, Ṡ=1) (4)

where Ż is used instead of Z̈ in order to allow thinking of conditional distributions. This shows
that effects of Ẍ, as defined in (3), do not have a balanced formulation in the reduced model.
Of course, this is the general problem resulting from the omission of confounding variables.

Here it is important, however, that the problem does not result from conditioning on Ṡ. It
is true that Ṡ is a collider, entailing that conditioning on Ṡ changes the correlation between
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Table 1.1 Fictitious data for the example.

x z s y = 0 y = 1 cases

0 0 0 − − 800
0 0 1 100 100 200
0 1 0 − − 600
0 1 1 120 280 400
1 0 0 − − 400
1 0 1 120 480 600
1 1 0 − − 200
1 1 1 80 720 800

values of Ẍ and Z̈ in a reference set (sample). But this is not relevant here because effect
definitions are conditional on Ṡ = 1; in the example, they only concern students who actually
begin with university studies. Problems resulting from the omission of confounding variables
should therefore be clearly distinguished from ‘selection problems’.

7. Illustration with a numerical example. To illustrate the argument, I use the fictitious data in
Table 1.1. Based on these data, one can estimate the rule

(x, z) −→ E(Ẏ |Ẍ=x, Ż=z, Ṡ=1) (5)

and finds the values

x z E(Ẏ |Ẍ=x, Ż=z, Ṡ=1)

0 0 0.5
0 1 0.7
1 0 0.8
1 1 0.9

(6)

Conditioning on Ṡ=1 changes the relationship between Ẍ and Ż:

x Pr(Ż=1|Ẍ=x, Ṡ=0) Pr(Ż=1|Ẍ=x, Ṡ=1)

0 0.429 0.667
1 0.333 0.571

(7)

This is not relevant, however, because the rule (5) only applies to situations where Ṡ=1.

Now assume that values of Ż are not available. The data then lead to the following estimate of
an effect of Ẍ:

E(Ẏ |Ẍ=1, Ṡ=1)− E(Ẏ |Ẍ=0, Ṡ=1) = 0.857 − 0.633 = 0.224 (8)

This effect is not balanced. As can be seen from (7), the distribution of the omitted variable
Ż is different for Ẍ=0 and Ẍ=1. This means that the effect cannot be attributed solely to a
difference in Ẍ . Of course, without observations on Ż one cannot assess the contribution of this
variable.

8. Selection and omitted confounders. In order to stress that ‘selection problems’ and problems
resulting from unobserved confounders should be distinguished, I briefly consider a further ex-
ample: How does the risk of divorce depends on the women’s level of education? Researchers
often found that education has a positive impact on the risk of divorce, but there also are other
findings. In a recent study, Bernardi and Martinez-Pastor (2011) discuss the hypothesis that
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the observed relationships between education and risk of divorce might result, at least in part,
from ‘selection effects’. However, it is not immediately clear how to understand this hypothesis.

To see this, one can use Model 1.2 with the following interpretation. Ṡ=1 if a woman is married,
and Ṡ=0 otherwise. Ẏ is an indicator variable for becoming divorced;3 Ẍ records the level of
education, and Z̈ is an omitted confounder. Obviously, without being married there can be no
risk of divorce. Consequently, Ṡ=1 is also a necessary precondition for the variables’, Ẍ and Z̈,
having an impact on the risk of divorce.

Of course, one can assume that distributions of values of Ẍ and Z̈ exist for married and un-
married women in some specified population.4 So one can think that marriage changes these
distributions and their correlation, and consider this as a ‘selection effect’. But this selection ef-
fect cannot change relationships between these variables and the risk of divorce; simply because
these relationships are only defined conditional on Ṡ=1.

However, an important part of the research question concerns the observation of historically
changing relationships between women’s education and the risk of divorce. One has then to
consider at least two periods (t = 1, 2), say

(Ẍ1, Ż1, Ṡ1, Ẏ1) −→ (Ẍ2, Ż2, Ṡ2, Ẏ2) (9)

Żt represents the distribution of the omitted confounder in period t. This allows one to think
of the observed relationships in the following way:

E(Ẏt|Ẍt=x, Ṡt=1) =
∑

z
E(Ẏt|Ẍt=x, Żt=z, Ṡt=1)Pr(Żt=z|Ẍt=x, Ṡt=1) (10)

So it is quite possible that differences between the observed relationships can be due to both

a) changes in the conditional expectation E(Ẏt|Ẍt=x, Żt=z, Ṡt=1) which, presumably, has a
causal interpretation, and

b) changes in the conditional distributions of the omitted confounder, Pr[Żt|Ẍt=x, Ṡt=1].

Most probably, they are due to both kinds of changes so that one would like to learn about the
quantitative relevance of omitted confounders. But, of course, this would require to observe the
confounder.

The question remains whether one can think of (b) as a ‘selection effect’. Obviously not in the
static sense referred to above. One would need to consider the function

(x, z) −→ Pr(Ṡt=1|Ẍt=x, Żt=z) (11)

A change of this function would describe a historically changing selection into marriage. How-
ever, the changes referred to in (b) do not only result from a change in the function (11). As
seen from

Pr(Żt=z|Ẍt=x, Ṡt=1) =
Pr(Ṡt=1|Ẍt=x, Żt=z) Pr(Żt=z|Ẍt=x)

Pr(Ṡt=1|Ẍt=x)
(12)

they can also result from a change in the conditional distributions of the omitted confounder.

Consequently, without observing the confounder (whose supposed existence motivates the dis-
cussion) one cannot draw any clear conclusions. On the other hand, if one could observe Żt, one
could immediately consider the relationship

(x, z) −→ E(Ẏt|Ẍt=x, Żt=z, Ṡt=1) (13)

3Bernardi and Martinez-Pastor use a duration model, but this is not important for the present conceptual
discussion.
4To make this precise, one would need statistical variables instead of the modal variables, Ẍ and Z̈.
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and recognize that the risk of divorce not only depends on the women’s level of education, but
also on another identifiable variable, Ż.

2. Choice-based selection

I now consider selection variables which get their values from decisions of individual or collective
actors. Such variables will be called ‘choice variables’.

1. A notion of choice variables. As I will use the term, a choice variable, say C, has the following
features:

a) The domain of C is a set of m ≥ 2 alternatives, numerically represented by C = {1, . . . ,m}.

b) Referring to a choice variable entails that there is an individual or collective agent who can
choose, or already has chosen, a particular value of the variable. The agent associated with
a choice variable C will be denoted by A[C].

c) It is presupposed that the agent has the power to select one of the alternatives. In other
words, C must only contain states which can be realized by the agent.

d) The agent is assumed to have considered the alternatives before one of them is actually
chosen. I do not assume that the agent is ‘rational’ in any particular sense.

Following this definition, choice is a specific kind of selection, namely a selection which is reflex-
ively generated by an actor. This is meant by the expression ‘choice-based selection’.5

2. Two contexts for using choice variables. Choice variables can be used in two different contexts.
In one context, one conceives of a choice variable as a kind of event variable. C=c then means
that the agent, A[C], has chosen the alternative c ∈ C. In addition, C=0 means that such an
event has not yet occurred.

In this understanding, choice variables can be used in explanatory models, both as explanatory
variables and as dependent variables. A model that attempts to explain choices, considered as
events, will be called an explanatory choice model . Such a model can be depicted as

Ẍ −→→ Ċ

where Ċ is the choice variable, and Ẍ denotes the explanatory variable (possibly consisting of
several components). For example, one can think that the model is intended to represent the
choice of a child’s school type; A[Ċ] refers to the child’s parents, and Ẍ denotes the parents’
educational level. Note that this understanding entails that the parents have the power to choose
a school type for their child.

In a quite different context, choice variables serve to consider possible consequences of hypothet-
ically chosen alternatives. To hypothetically give a choice variable a value is obviously different
from an actual choice, it simply means to consider that alternative. Thus, in this understanding,
a choice variable is not an event variable; and in a functional model it can only be used as an
exogenous variable. As an example, think again of the parents’ choice of a school type for their
child. One can consider the following model:

5So it has nothing to do with ‘choice-based sampling’, that is, sampling designs which use a stratification w.r.t.
realized choices; see Scott and Wild (1989).
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Model 2.1

Ẏ ∗

C̈

Ẍ --

�������*

�������*

The model relates to a generic A[C̈], the parents who are assumed to consider possible values
of C̈ (school types). As before, Ẍ denotes the parents’ educational level. Ẏ ∗ is used to assess
possible outcomes: the child’s educational success that can be expected if, given Ẍ , the parents
would choose C̈=c. The corresponding function is

(x, c) −→ E(Ẏ ∗|Ẍ=x, C̈=c) (14)

A model of this kind will be called an evaluative choice model . Its aim is not to predict realized
choices. Instead, it is intended to serve thinking about modal questions (in the sense introduced
in § 1.4).6 Consequently, also Ẏ ∗ cannot be understood as representing realized outcomes, and
must be distinguished from an outcome variable in an explanatory model.

There obviously are similarities between an evaluative choice model and a treatment model (as
this term was introduced in Rohwer 2012: 24). But also note the different tasks. A treatment
model serves to formulate a generic rule about causal effects of treatments (= events which
can be deliberately generated). An evaluative choice model serves an agent to consider the
consequences of available alternatives. While randomization might be used for a treatment
model, randomization w.r.t. the choice variable would contradict the idea of a choice.

3. Primary and secondary actors of choice models. In Rohwer (2012: 24) I introduced a distinc-
tion between primary actors (= agents of the social processes that are the topic of a model) and
secondary actors (= those who construct and use a model). The distinction can easily be applied
to explanatory choice models. These models are concerned with choices made by primary actors.
The secondary actors, in contrast, are those who construct and use these models for one reason
or another.

Now consider an evaluative choice model. Since the model serves an agent to think about
available alternatives and possible consequences of choosing one of them, the agent is a secondary
actor w.r.t. the model. On the other hand, the model is concerned with the agent’s choice, and
so the agent can also be considered as a primary actor. However, an evaluative model has not
the task to predict the agent’s choice. ‘To choose’ and ‘to predict the outcome of a choice’ are
obviously different activities.

4. Consideration of modal questions. Let me stress the connection between modal questions (as
introduced in § 1.4) and evaluative choice models. An explanatory choice model cannot be used
to consider modal questions (or must be reinterpreted in some way). As an illustration, I refer
to Model 2.1. This model is intended to show how expectations of an outcome variable, Ẏ ∗,
depend on exogenously given values of Ẍ and hypothetically chosen values of C̈.

Of course, in order to become useful, one needs a quantification of the function (14). Data might
come from a sample that relates to the following model where it is assumed that Ẏ has the same
meaning as Ẏ ∗.

6Of course, an evaluative choice model only allows an agent to consider conditional expectations and cannot be
used to formally derive a particular decision.
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Model 2.2

Ẏ

Ċ

Ẍ --

??
�������*

�������*

In this model, Ċ is an event variable, representing alternatives chosen by the primary agents to
which the model relates. Since Ċ depends on Ẍ, part of the model consists in an explanatory
choice model.

Only the evaluative model 2.1, not the explanatory model 2.2, can be used for modal questions.
In the explanatory model, values of Ċ come into being according to a function, Ẍ −→→ Ċ, that
predicts the choices actually made. This model can therefore not be used for a situation where
a choice variable can hypothetically be given different values because a choice event has not yet
occurred.

Nevertheless, data corresponding to the explanatory model 2.2 can also be used to estimate the
function (14). Such data would allow one to estimate E(Ẏ |Ẍ=x, Ċ=c), and then use the rule

Estimate E(Ẏ ∗|Ẍ=x, C̈=c) by E(Ẏ |Ẍ=x, Ċ=c) (15)

As assumed by Model 2.2, the data result from ‘self selection’ in the sense of choices, made by
primary actors, which depend on a variable Ẍ; Ṡ stochastically depends on Ẍ .7 But this does
not entail a sample selection problem that might create a bias when using the rule (15). As
mentioned in § 1.6, it is quite possible that Model 2.2 misses a relevant confounder and could
be replaced by a better model (if the necessary data would be available). But this has nothing
to do with the fact that the model contains an event variable that gets its values by choices of
primary actors.

5. Modal questions w.r.t. necessary preconditions. I now consider a situation where the choice
concerns a necessary precondition for a possible outcome. To illustrate, I continue with the
example that was introduced in § 1.3: beginning with university studies and consideration of
possible outcomes. Details depend on the set-up of the choice situation. I consider two situations.

(1) I begin with a situation where an agent has the power to decide whether a person (the agent
herself or someone else) will begin with university studies. There is then a choice variable, C̈,
having the domain C = {1, 2}; and C̈ = 1 means ‘beginning’ and C̈ =2 means ‘not beginning’
with university studies. The outcome assumed to be relevant for the choice is the success of the
university education; it will be denoted by Ẏ ∗. I further assume that expectations about Ẏ ∗

depend on an exogenous variable, Ẍ , representing properties of the person who possibly begins
university studies that are known in the choice situation.

With this notation, one can again use Model 2.1 as an evaluative model and Model 2.2 as
a corresponding explanatory model. The evaluative model is to be used for the two modal
questions. First, what would be the outcome if C̈=2? Obviously, without beginning university
studies there could be no successful outcome (Ẏ ∗ is then either undefined or has the value zero)

Now consider the other question, What is the expected value of Ẏ ∗ if C̈=1, given Ẍ =x ? To
answer this question, one needs an estimate of E(Ẏ ∗|Ẍ = x, C̈ =1). This can be derived from
the explanatory model 2.2 by using the rule (15). One only needs E(Ẏ |Ẍ=x, Ċ=1). Whether
also E(Ẏ |Ẍ=x, Ċ=2) can be given a sensible interpretation is obviously irrelevant.

7Note that this is not the case in the evaluative model 2.1. In fact, in that model it is not even possible to
imagine a dependence of C̈ on Ẍ.
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(2) The argument in (1) presupposes that the choice variables in the two models, C̈ and Ċ,
have the same meaning. I now consider a situation where an agent cannot immediately decide
whether to begin, or not begin, with university studies, but only whether to apply for admission.
The choice variable, C̈, has again the domain C = {1, 2}, but now C̈=1 means ‘to apply’ and
C̈=2 means ‘not to apply’. An evaluative choice model can now be depicted as follows.

Model 2.3

Ẏ ∗

C̈ Ṡ∗

Ẍ

--

--

??�������*

�������*

Ẍ and Ẏ ∗ (and correspondingly Ẏ ) have the same meaning as before. In addition, there is now
the variable Ṡ∗ representing the decision of the admission committee: Ṡ∗ = 1 if the applicant
is admitted, and Ṡ∗ = 0 otherwise. Both Ẏ ∗ and Ṡ∗ are starred in order to distinguish these
variables from corresponding variables in an explanatory model.

The model can be used for thinking about modal questions in two steps. In a first step, the agent,
A[C̈], can consider E(Ṡ∗|Ẍ = x, C̈ = 1). Given information from a corresponding explanatory
model (see Model 1.1), one can use E(Ṡ|Ẍ = x, Ċ =1) and a suitably modified version of rule
(15). In a second step, one can think about the final outcome, Ẏ ∗, conditional on Ṡ∗=1. In this
step, E(Ẏ |Ẍ =x, Ṡ=1) can be used as an estimate of E(Ẏ ∗|Ẍ=x, Ṡ∗=1). Finally, both steps
can be combined:

Estimate E(Ẏ ∗|Ẍ=x, C̈=1) by E(Ẏ |Ẍ=x, Ṡ=1)E(Ṡ|Ẍ=x) (16)

Notice that the evaluative model 2.3 relates to a choice situation where the committee has
not yet decided about A[C̈]’s application (simply because A[C̈] has not yet decided whether to
apply). Possibly useful information can therefore only result from estimates of E(Ṡ|Ẍ=x).

3. Causal effects of choice variables

1. Three different choice situations. How to think of causal effects of choice variables depends
on the kind of choice situation. I propose to distinguish three situations where C̈ always is a
binary choice variable with domain C = {0, 1}.8

a) The choice concerns a necessary precondition for a process generating values of an outcome
variable, say Ẏ , to take place. So the causal effect of C̈ can simply be stated: C̈ = 1 is a
necessary precondition for Ẏ . In order to quantify the effect, one can consider C̈ as an event
variable and use

E(Ẏ |Ẍ=x, C̈=1) (17)

where Ẍ represents conditions on which the process generating values of Ẏ depends.

b) Associated with the two alternatives are two qualitatively different outcome variables, say
Ẏ0 and Ẏ1. This implies that one has to consider two qualitatively different effects, one effect
of C̈=0 and another one of C̈=1. Both should be considered separately as indicated in (a).

c) The choice concerns two different ways to generate values of a single outcome variable, Ẏ .
So one can compare the alternatives w.r.t. expectations of Ẏ , and use the effect definition

∆s(Ẏ ; C̈[0, 1], Ẍ=x) := E(Ẏ |Ẍ=x, C̈=1)− E(Ẏ |Ẍ=x, C̈=0) (18)

8This differs from the convention introduced in § 2.1, but eases the notation.
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Figure 3.1 Illustration of an unbalanced effect (values of Ż on the abscissa).

In the following, I only discuss the situation (c), in particular, how to think about omitted
confounders. Note that this problem is of no particular relevance in the situations (a) and (b).
Of course, the conditional expectation referred to in (17) might well depend on further variables.
But the effect of C̈ can always be interpreted as an average effect w.r.t. distributions of these
variables. So this is different from the situation discussed in Section 1 where one is interested
in effects of Ẍ (e.g. education of married women).

2. The problem: omitted confounders. To focus the discussion, I consider

Model 3.1

Z̈

Ẏ

Ċ

Ẍ --

��
??

66

�������*

�������*

The structure is the same as in Model 1.2, but it is now assumed that Ẏ has a distribution for
both values of Ċ. As an example, one can think that the choice is between two learning frames,
σ0 and σ1, where a person can acquire competencies represented by Ẏ , and it is assumed that
the processes generating values of Ẏ also depend on two further variables, Ẍ and Z̈, having
values already fixed in the choice situation.

If data for both variables are available, one can use Z̈=z as an additional condition in the effect
definition (18). But if data on Z̈ are not available, this variable is an omitted confounder, and
the effect definition (18) relates to a reduced model. Substituting Z̈ by a variable Ż having a
distribution, the observable effect is then given by

∆s(Ẏ ; Ċ[0, 1], Ẍ=x) =
∑

z

[

E(Ẏ |Ċ=1, Ẍ=x, Ż=z) Pr(Ż=z|Ċ=1, Ẍ=x)− (19)

E(Ẏ |Ċ=0, Ẍ=x, Ż=z) Pr(Ż=z|Ċ=0, Ẍ=x)
]

This effect is no longer balanced because

Pr[Ż|Ċ=1, Ẍ=x] 6= Pr[Ż|Ċ=0, Ẍ=x]

and it is therefore unclear how to think of a causal effect of Ċ; see the illustration in Figure 3.1.
This difficulty motivates an interest in balanced effect formulations.
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3. The perspective of evaluative choice models. A further motive for an interest in balanced effect
formulations comes from evaluative choice models where an agent is interested in potential effects
of the available alternatives. Consider the evaluative choice model that corresponds to Model
3.1:

Model 3.2

Z̈

Ẏ ∗

C̈

Ẍ --

66

�������*

�������*

The agent, A[C̈], knows the value of Ẍ, say x∗. Assuming that only the rule (19) is available,
expectations are evaluated by comparing

E(Ẏ ∗|C̈=0, Ẍ=x∗) and E(Ẏ ∗|C̈=1, Ẍ=x∗)

As shown by (19), both are averages w.r.t. different distributions of Ż. However, the agent
can assume that there is a particular value of this variable, say z∗, that is identical for both
alternatives in the given choice situation. Even if this value is not known, it would probably
preferable to use a balanced effect formulation.9

4. Constructions of balanced effects. So one should ask, Can balanced effect formulations be
constructed? There are three approaches.

a) Randomization w.r.t. all possible confounders. As I have argued in Rohwer (2012), even if
possible, this approach is most often problematic in social research because it would change
the processes that one aims to investigate.

b) One uses a fixed distribution of the confounding variables. For example, instead of (19) one
can consider

∑

z

[

E(Ẏ |Ċ=1, Ẍ=x, Ż=z) Pr(Ż=z) − E(Ẏ |Ċ=0, Ẍ=x, Ż=z) Pr(Ż=z) (20)

where Pr[Ż] is an arbitrarily defined distribution (e.g., the distribution of a corresponding
statistical variable in a sample). Of course, this method can only be used with observed
confounders; one does not get effects that are balanced w.r.t. omitted confounders.

c) One uses specific kinds of parametric models which, given sufficient assumptions, allow one
to construct balanced effects. This will be further discussed in the next paragraph.

5. Parametric assumptions about confounders. I use the essential ideas of Heckman’s probit
selection model (Heckman 1979) to illustrate the parametric approach to the construction of
balanced effects.10 The basic idea is to assume that omitted confounders can be implicitly taken
into account by a joint parametric distribution for the variables Ẏ and Ċ.

To explain the argument, I start form Model 3.1. If Z̈ is observed, one can begin with a linear
model

Ẏ = gx(x) + gz(z) + Ċγ + ǫ′ (21)

9In this respect, evaluative choice models are similar to treatment models which also motivate an interest in
balanced effect formulations.
10Here I consider this model as a proposal for coping with omitted confounders (‘endogeneity bias’). As proposed
by Heckman, the model is primarily used for ‘sample selection problems’ in the sense defined in § 1.1, that is, in
situations where observations are only available if Ċ=1.
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where gx and gz are deterministic functions of values of Ẍ and Z̈, respectively, and ǫ′ is a residual
random variable. Assuming that the distribution of ǫ′ is independent of Ċ, one can interpret γ
as a balanced effect. If Z̈ is not observed, one can consider the reduced model that is based on
assuming, instead of Z̈, a variable Ż with some unknown but exogenously given distribution.
Instead of (21), one gets the reduced model

Ẏ = gx(x) + Ċγ + ǫ (22)

where ǫ := gz(Ż) + ǫ′. Since Ċ depends on Ż, the distribution of ǫ depends on Ċ, and the effect
of Ċ is not balanced w.r.t. ǫ. But from (22) one can derive

E(Ẏ |x, c) = gx(x) + cγ + E(ǫ|x, c)

This shows that, in order to estimate γ, one would like to know values of E(ǫ|x, c). If observed,
they could be used as values of a further variable in a regression model for Ẏ . Of course, these
values cannot be observed; but given enough assumptions, they can be constructed.

There are two steps. In the first step one assumes a model for Ċ. This is done by employing a
latent variable, η′, as follows:

Ċ = I[η′ > −hx(x)− hz(z)] (23)

where hx and hz are deterministic functions of values of Ẍ and Z̈, respectively (I[. . .] denotes the
indicator function). Again, one can define η := hz(z)+η′, and rewrite (23) as Ċ = I[η > −hx(x)].

In the second step, the distributional assumptions come into play. These concern ǫ′, η′, Ż, and
(ǫ, η):

a) ǫ′ ∼ N (0, σ2

ǫ′)

b) η′ ∼ N (0, 1)

c) gz(Ż) ∼ N (µgz , σ
2
gz)

d) hz(Ż) ∼ N (µhz
, σ2

hz

)

e) ǫ′ and gz(Ż) are independent.

f) η′ and hz(Ż) are independent.

g) The joint distribution of ǫ and η is bivariate normal with a correlation ρ.

These assumptions entail: ǫ ∼ N (µgz , σ
2
ǫ ) with σ2

ǫ = σ2
gz

+ σ2

ǫ′ , and η ∼ N (µhz
, σ2

η) with
σ2
η = σ2

hz

+ 1.

From these assumptions and their implications, one can finally derive expressions for the condi-
tional expectations E(ǫ|x, c):

E(ǫ|x, c=1) = E(ǫ|x, η > −hx(x)) = µgz + ρ σǫ
φ(h∗x(x))

Φ(h∗x(x))

and correspondingly

E(ǫ|x, c=0) = E(ǫ|x, η ≤ −hx(x)) = µgz − ρ σǫ
φ(h∗x(x))

Φ(−h∗x(x))

where φ and Φ denote, respectively, the density and distribution function of the standard normal
distribution, and h∗x(x) := (hx(x) + µhz

)/ση . Both can be combined as

E(ǫ|x, c) = µgz + ρ σǫ λ(x, c) (24)
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with

λ(x, c) := c
φ(h∗x(x))

Φ(h∗x(x))
− (1− c)

φ(h∗x(x))

Φ(−h∗x(x))

It can now be seen how this is an approach to the construction of balanced effects. By defining
a new residual variable,

ǫ∗ := ǫ− ρ σǫ λ(x, c) − µgz

one can rewrite (22) as

Ẏ = g(x) + Ċγ + ρ σǫ λ(x, c) + µgz + ǫ∗ (25)

containing a further regressor, λ(x, c), and the new residual, ǫ∗. Now one can derive

E(ǫ∗|x, c) = 0 and Cov(ǫ∗, Ċ|x) = 0

showing that the effect of Ċ is balanced w.r.t. ǫ∗.

However, it is obvious that this result relies on very particular assumptions about the distribu-
tions of omitted variables which are difficult to justify in applications.11 The most important
assumption concerns the distribution of the omitted confounder, Ż. If it is not normally dis-
tributed, e.g. if it is a binary variable, the argument will not work. Moreover, in order to actually
construct the conditional expectations (24), one would need assumptions about the mean and
the variance of the unobserved confounder.
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