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Rohwer

Models of Educational Stages

Abstract

Invited by the National Educational Panel Study (NEPS), during the Winter 2011/12, I gave
a series of lectures about ‘Statistical methods in sociological research of education’. This text
comprises an elaboration of two of the lectures discussing models of educational stages. I consider
two kinds of such models, both dealing with a sequence of two learning frames. Models of the
first kind assume that individuals sequentially participate in both learning frames; models of the
second kind involve a selection process that concerns transitions to the second learning frame.
Following the introduction of these two kinds of models, I take up the distinction between
primary and secondary effects of the family background. I first consider the standard approach
where primary effects concern individual’s level of academic performance, and secondary effects
concern transition probabilities given fixed performance levels. I then introduce an alternative
approach where primary effects concern individual’s opportunities to make a transition (which
in turn may depend on academic performance), and secondary effects correspondingly concern
how they actually use these opportunities.

Keywords

educational stages, educational inequality, primary and secondary effects, functional models
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Rohwer

Invited by the National Educational Panel Study (NEPS), during the Winter 2011/12, I gave
a series of lectures about ‘Statistical methods in sociological research of education’. This text
comprises an elaboration of two of the lectures discussing models of educational stages.

As a starting point, I take up the idea that education takes place in a wide variety of ‘learning
environments’ (Bäumer et al. 2011). Formal representations of such environments will be called
learning frames and symbolically denoted by σ. There definition should include: a character-
ization of the institutional (not necessarily ‘formal’) context; a characterization of the kind of
capabilities that can be learned; a characterization of the ways by which these capabilities can
be acquired; specification of entry requirements (if any); definition of an outcome space, say
Yσ, for defining variables representing what has been learned. The general notion of learning
frames covers both broad (e.g. ‘elementary school’) and fine-grained (e.g. ‘learning reading in
first grade elementary school’) definitions. This must be taken into account when defining the
outcome space Yσ. In order to represent outcomes of broadly defined learning frames it could
be sensible to use outcome spaces that consist of two or more domain-specific components.

A further question concerns the source of ‘observed’ outcome values. There are two approaches:
One can use the evaluations that are generated in the learning frames (e.g. school certificates),
or one can employ external tests developed and applied by a researcher. Choosing one or the
other approach depends on the research interest. The first approach corresponds to an interest
in learning how educational outcomes are actually generated and evaluated in a society. The
second approach corresponds to an interest in developing scientific evaluations. In the present
text, I am neutral on this point and assume that outcome values are given in some way. This is
possible because I only use fictitious data for illustrations.

As a formal framework, I use functional models (see Rohwer (2010, 2012) for notations and
definitions). In this text, they represent educational processes which consist of two consecu-
tive learning frames, σ1 and σ2. The first section considers models of consecutive educational
outcomes which presuppose that individuals participate in both learning frames. The second
section considers models of sequential transitions which entail a selection process. The third sec-
tion discusses distinctions between primary and secondary effects of the family background. The
fourth section considers an enlarged model in which transitions depend on previous educational
outcomes.

1. Consecutive educational outcomes

1. Framework of a two-stage model. I consider a sequence of two learning frames, σ1 and σ2. Let
Ẏt denote the outcome of learning frame σt (t = 1, 2), based on some measure of what has been
learned. I assume that these are binary or quantitative variables so that one can sensibly refer
to expectations. I consider a model which posits that these outcome variables depend on two
explanatory variables, say Ẍ (e.g. a measure of socio-economic status) and Z̈ (e.g. an indicator
of educational aspiration). The model can be depicted as follows:

Model 1

Ẏ1 Ẏ2

Z̈

Ẍ

66

??
--

���������1

���������1

PPPPPPPPPq

PPPPPPPPPq
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Table 1 Fictitious data for the two-stage model.

x z y1 y2 cases x z y1 y2 cases

0 0 0 0 300 1 0 0 0 200
0 0 0 1 400 1 0 0 1 300
0 0 1 0 200 1 0 1 0 150
0 0 1 1 600 1 0 1 1 850
0 1 0 0 300 1 1 0 0 200
0 1 0 1 300 1 1 0 1 250
0 1 1 0 200 1 1 1 0 100
0 1 1 1 700 1 1 1 1 950

Referring to expectations, the model consists of two stochastic functions:

σ1 : (x, z) −→ E(Ẏ1|Ẍ=x, Z̈=z)

σ2 : (x, z, y) −→ E(Ẏ2|Ẍ=x, Z̈=z, Ẏ1=y)

The first function is intended to show how the expectation of the endogenous variable Ẏ1 (marked
by a single dot) depends on the two exogenous explanatory variables (marked by two dots), the
second function is intended to show how the expectation of Ẏ2 depends on the same variables
and additionally on the outcome of the first learning frame which is used as an endogenous
explanatory variable.

2. Conditional and unconditional effects. Without presupposing any particular parametric model,
effects of Ẍ (SES) on the first outcome can be defined by

∆s(Ẏ1; Ẍ[x′, x′′], Z̈=z) := E(Ẏ1| Ẍ=x′′, Z̈=z)− E(Ẏ1| Ẍ=x′, Z̈=z) (1)

Effects of Ẍ on the second outcome can be defined in two different ways. One can define
conditional effects which take into account outcomes of the first learning frame:

∆s
c(Ẏ2; Ẍ [x′, x′′], Z̈=z, Ẏ1=y) := (2)

E(Ẏ2| Ẍ=x′′, Z̈=z, Ẏ1=y)− E(Ẏ2| Ẍ=x′, Z̈=z, Ẏ1=y)

And one can consider unconditional effects:

∆s
u(Ẏ2; Ẍ [x′, x′′], Z̈=z) := E(Ẏ2| Ẍ=x′′, Z̈=z)− E(Ẏ2| Ẍ=x′, Z̈=z) (3)

In general, all these effects are context-dependent, that is, depend on values of Z̈. To illustrate,
I use the fictitious data in Table 1:

Effects on first outcome:

∆s(Ẏ1; Ẍ [0, 1], Z̈=0) = 0.667 − 0.533 = 0.134

∆s(Ẏ1; Ẍ [0, 1], Z̈=1) = 0.700 − 0.600 = 0.100

meaning that higher SES has a positive effect on the educational outcome, but the effect is lower
for individuals with a high educational aspiration.

Conditionals effect on second outcome:

∆s
c(Ẏ2; Ẍ[0, 1], Z̈=0, Ẏ1=0) = 0.600 − 0.571 = 0.029

∆s
c(Ẏ2; Ẍ[0, 1], Z̈=1, Ẏ1=0) = 0.556 − 0.500 = 0.056
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∆s
c(Ẏ2; Ẍ[0, 1], Z̈=0, Ẏ1=1) = 0.850 − 0.750 = 0.100

∆s
c(Ẏ2; Ẍ[0, 1], Z̈=1, Ẏ1=1) = 0.905 − 0.778 = 0.127

Unconditional effect on second outcome:

∆s
u(Ẏ2; Ẍ [0, 1], Z̈=0) = 0.767 − 0.667 = 0.100

∆s
u(Ẏ2; Ẍ [0, 1], Z̈=1) = 0.800 − 0.667 = 0.133

In order to understand the difference between conditional and unconditional effects, it is impor-
tant to recognize that both concern the outcome in the second learning frame (σ2). Ẏ1 is to be
understood as representing a condition for the outcome generation in the second learning frame.
This is made explicit in the conditional effect definition. In contrast, the unconditional effect
is derived from a reduced model that integrates over the distribution of Ẏ1. This is possible,
without additional assumptions, because Ẏ1 is a mediating variable in the two-stage model:

E(Ẏ2| Ẍ=x, Z̈=z) =

E(Ẏ2| Ẍ=x, Z̈=z, Ẏ1=0)Pr(Ẏ1=0|Ẍ=x, Z̈=z) + (4)

E(Ẏ2| Ẍ=x, Z̈=z, Ẏ1=1)Pr(Ẏ1=1|Ẍ=x, Z̈=z)

In this sense, viewing Ẏ1 as a mediating variable, the unconditional effect corresponds to the
total effect of Ẍ in the context given by Z̈.

3. Effects of endogenous educational outcomes. So far I have considered effects of an exogenous
variable, Ẍ . In formally the same way one could define effects of Z̈ and use Ẍ as a context
variable. In order to consider effects of the endogenous variable Ẏ1, one has to assume that
values of both exogenous variables can be fixed. An effect can then be defined by

∆s(Ẏ2; Ẏ1[y
′, y′′], Ẍ=x, Z̈=z) := (5)

E(Ẏ2| Ẏ1=y′′, Ẍ=x, Z̈=z)− E(Ẏ2| Ẏ1=y′, Ẍ=x, Z̈=z)

Like the conditional effects of exogenous variables, this effect concerns the generation of values
of Ẏ2 in the second learning frame. The effect corresponds to the hypothesis that Ẏ2 depends on
what has been learned in the preceding learning frame even if the context is fixed by particular
values of Ẍ and Z̈. With the data in Table 1 one finds:

∆s(Ẏ2; Ẏ1[0, 1], Ẍ=0, Z̈=0) = 0.750 − 0.571 = 0.179

∆s(Ẏ2; Ẏ1[0, 1], Ẍ=0, Z̈=1) = 0.778 − 0.500 = 0.278

∆s(Ẏ2; Ẏ1[0, 1], Ẍ=1, Z̈=0) = 0.850 − 0.600 = 0.250

∆s(Ẏ2; Ẏ1[0, 1], Ẍ=1, Z̈=1) = 0.905 − 0.556 = 0.349

showing how the effects of previous learning depend on both Ẍ (SES) and Z̈ (aspiration).

4. Endogenously generated inequality. In Model 1, one can think that part of the variation of Ẏ2

is due to endogenously generated variation of Ẏ1, that is, variation conditional on values of the
exogenous variables, Ẍ and Z̈. Formally, one can use a conditional variance decomposition

V(Ẏ2|x, z) = V[E(Ẏ2|Ẏ1, x, z)] + E[V(Ẏ2|Ẏ1, x, z)]

This is formally analogue to the variance decomposition discussed in Rohwer (2012: 11f). The
first part,

V[E(Ẏ2|Ẏ1, x, z)] =
∑

y1
[E(Ẏ2|Ẏ1=y1, x, z) − E(Ẏ2|x, z)]

2 Pr(Ẏ1=y1|x, z)
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is now interpreted as the part of the variation of Ẏ2 which is generated by variation of Ẏ1. The
second part,

E[V(Ẏ2|Ẏ1, x, z)] =
∑

y1
V(Ẏ2|Ẏ1=y1, x, z) Pr(Ẏ1=y1|x, z)

is the ‘residual variation’ which cannot be attributed to Ẏ1. Using the data in Table 1, one finds
the following values.

x z V(Ẏ2|x, z) V[E(Ẏ2|Ẏ1, x, z)] E[V(Ẏ2|Ẏ1, x, z)]

0 0 0.2222 0.0079 0.2143
0 1 0.2222 0.0185 0.2037
1 0 0.1789 0.0139 0.1650
1 1 0.1600 0.0256 0.1344

In this example, the proportion of variation of Ẏ2 which is endogenously generated by variation in
the educational outcomes of the first learning frame (Ẏ1|x, z), is between 3.5 and 16%, depending
on the values of the exogenous variables.

5. Consequences of omitted variables. I now consider consequences of omitting an explanatory
variable. The general strategy is to compare a hypothetically complete model (here I use Model
1 for illustrations) with a reduced model that results from integrating over the conditional
distribution of the omitted variable. There are then two cases.

The first case occurs if the omitted variable is a mediating variable in the complete model.
Its conditional distribution can then be derived from the model without further assumptions.
Referring to Model 1, this case is illustrated by omitting Ẏ1 (see § 1.2).

The second case occurs if the conditional distribution of the omitted variable cannot be derived
from the complete model without further assumptions. To illustrate, I assume that Z̈ is omitted
and one is interested in effects of Ẍ . In order to derive a reduced model, Z̈ must be substituted
by a variable, say Ż, that can be assumed to have a (conditional) distribution. The derivation
depends on the kind of effect.

I begin with the effect of Ẍ on Ẏ1. For the reduced model, one immediately finds

E(Ẏ1|Ẍ=x) =
∑

z
E(Ẏ1|Ẍ=x, Ż=z) Pr(Ż=z|Ẍ=x) (6)

A special case occurs if the effect of Ẍ on Ẏ1 does not depend on values of Ż. Then, omitting Ż
does not change the relationship between Ẍ and Ẏ1.

1 In general, the effect of Ẍ in the reduced
model is a kind of mean value of its context-dependent effects in the complete model.

The same considerations apply to the unconditional effect of Ẍ on Ẏ2 for which one gets the
reduced expression

E(Ẏ2|Ẍ=x) =
∑

z
E(Ẏ2|Ẍ=x, Ż=z) Pr(Ż=z|Ẍ=x) (7)

which is completely analogue to (6).

When considering the conditional effect of Ẍ on Ẏ2 one has to take into account that Z̈ is a
confounder w.r.t. the relationship between Ẏ1 and Ẏ2. The reduced relationship is given by

E(Ẏ2|Ẍ=x, Ẏ1=y1) =
∑

z
E(Ẏ2|Ẍ=x, Ż=z, Ẏ1=y1) Pr(Ż=z|Ẍ=x, Ẏ1=y1) (8)

1Note that it is not essential whether Ż depends on Ẍ; the essential point concerns whether there is an interaction
between Ẍ and Z̈ w.r.t. Ẏ1.
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Here the conditional distribution of Ż that is used for mixing the conditional effects no longer
only depends on exogenous variables (Ẍ in this example), but also on the endogenous variable
Ẏ1. In general, this also changes the relationship between Ż and Ẍ. For example, even if Ż is
independent of Ẍ, this is no longer true conditional on values of Ẏ1. (This is illustrated by the
data in Table 1.) Whether this provides a reason for thinking that the effect of Ẍ in the reduced
model is in some sense ‘biased’ will be discussed in § 1.7.

6. Example with linear regression functions. For further illustration of consequences of omitted
variables, I still refer to Model 1 but assume linear functional relationships:

E(Ẏ1|x, z) = α1 + xβ1 + zγ1 (9)

E(Ẏ2|x, z, y1) = α2 + xβ2 + zγ2 + y1δ (10)

As before, the interest concerns effects of x when z is omitted. In order to derive reduced models,
I assume that the distribution of the values of z is given by a density function f(z|x) with mean
µz which, for simplicity, does not depend on x.

(a) I begin with the effect of x on the expectation of Ẏ1. The relationship in the reduced model
is given by

E(Ẏ1|x) =

∫

z

E(Ẏ1|x, z) f(z|x) dz

and one immediately finds

E(Ẏ1|x) = (α1 + µzγ1) + xβ1

showing that the parameter associated with x does not change. (This would not be true if (9)
contained an interaction between x and z.)

(b) I now consider unconditional effects of x and z on Ẏ2. The relationship in the reduced model
is then given by

E(Ẏ2|x, z) =

∫

y1

E(Ẏ2|x, z, y1) f(y1|x, z) dy1

where f(y1|x, z) is the conditional density of Ẏ1. Entailed by (9), this is a density with mean
α1 + xβ1 + zγ1. It follows that

E(Ẏ2|x, z) = (α2 + α1δ) + x (β2 + β1δ) + z (γ2 + γ1δ) (11)

The parameters are obviously different from the original parameters in (10). However, they are
not ‘biased’, but correctly express the total (unconditional) effects of x and z on the expectation
of Ẏ2.

(c) I now consider the unconditional effect of x on Ẏ2 when z is omitted. The relationship in
the reduced model is then given by

E(Ẏ2|x) =

∫

y1,z

E(Ẏ2|x, z, y1) f(y1, z|x) dy1 dz

where f(y1, z|x) is the joint density of y1 and z. Since f(y1, z|x) = f(y1|x, z) f(z|x), one can
continue with the derivation in (b):

E(Ẏ2|x) =

∫

z

E(Ẏ2|x, z) f(z|x) dz = α2 + α1δ + µz (γ2 + γ1δ) + x (β2 + β1δ) (12)
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The parameter associated with x is the same as in (11) where z was not omitted and has the
same interpretation.

(d) Finally, I consider the conditional effect of x on Ẏ2 when z is omitted. The relationship in
the reduced model is then given by

E(Ẏ2|x, y1) =

∫

z

E(Ẏ2|x, z, y1) f(z|x, y1) dz = α2 + xβ2 + y1δ + E(Ż|x, y1) γ2 (13)

where f(z|x, y1) is the density of z conditional on x and y1, and

E(Ż|x, y1) =

∫

z

zf(z|x, y1) dz

is the conditional mean of z. How parameters change is best seen when using a linear relationship

E(Ż|x, y1) = αz + xβz + y1δz (14)

Inserting this into (13) leads to

E(Ẏ2|x, y1) = (α2 + αzγ2) + x (β2 + βzγ2) + y1 (δ + δzγ2) (15)

Parameters now consist of two parts. A first part equals the parameters as presupposed in (10),
a second part consists of the contribution to estimating the conditional mean of the omitted
variable, E(Ż|x, y1).

To illustrate, assume α1 =1, β1 =1, γ1 =1, α2 =0.5, β2 =1.5, γ2=2, δ=0.2, and µz =1. One
then finds: αz=0, βz =−0.5, δz =0.5, entailing that the coefficient of x in (15) is less than β2:
β2 + βzγ2 = 1.5− 0.5 · 2, and the coefficient of y1 is greater than δ: δ + δzγ2 = 0.2 + 0.5 · 2.

Of course, there is nothing wrong with these parameters. Assume that one knows an individual’s
values of Ẍ and Ẏ1, but not of Z̈. In order to apply the original model (10), one would need
an estimate of the individual’s value of Z̈. If one uses the conditional expectation as defined in
(14), then (10) and (15) lead to the same result. In this sense, the difference in the parameters
is required in order to get correct estimates with the reduced model.

7. Are effect definitions ‘biased’? When compared with (10), it is tempting to say that condi-
tional effects calculated with (15) are ‘biased’. However, one should be clear about what this
possibly could mean.

(a) Not only the estimation, already the definition of an effect must be based on assuming a
particular model. For example, one can use the following

Model 2

Ẏ1 Ẏ2

Ẍ

??
--

PPPPPPPPPq

PPPPPPPPPq

with the same variables as used for Model 1 to define an effect

∆s(Ẏ2; Ẍ[x′, x′′], Ẏ1=y) := E(Ẏ2| Ẍ=x′′, Ẏ1=y)− E(Ẏ2| Ẍ=x′, Ẏ1=y) (16)

This effect compares the outcomes, in the second learning frame, Ẏ2, of two generic individuals,
one with Ẍ=x′ and the other one with Ẍ=x′′. As made explicit in the definition, both have the
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same educational outcome, Ẏ1=y, in the first learning frame. However, no further assumptions
are made about the individuals; they can differ in all variables not explicitly represented in the
model (e.g. Z̈).2

(b) The statement that the effect defined in (16) is ‘biased’ has no meaning without explicitly
referring to another model that can be used as a standard of comparison. For example, it might
be said that the effect is biased because one should use Model 1 to define a ‘less biased’ effect.
Such a normative statement is also required in order to call Model 2 a ‘misspecified model’.3

(c) It is not possible to find, or generate, data for estimating Model 2 which entail that conditional
distributions of the values of omitted variables (e.g. Z̈) are independent of Ẍ and Ẏ1. In order to
assess the theoretically posited bias one would need to actually estimate the more comprehensive
Model 1, and this would require to get data about Z̈.

(d) Equation (13) seems to suggest that including estimates of the conditional mean values,
E(Ż|x, y1), into the reduced model would allow one to find an ‘unbiased’ estimate of β2. This
idea was proposed by Heckman (1979) who showed that in a class of specifically parameterized
linear models one can find estimates of the conditional mean values of Ż without observing its
values. However, the required assumptions are very restrictive, and it has been shown that the
approach can easily lead to very misleading parameter estimates (LaLonde 1986, Briggs 2004).

(e) It is a quite specific property of the simple linear model (10) that effects of Ẍ , Z̈ and Ẏ1

are context-independent. In general, there are no context-independent effects to which effects
derived from reduced models can be compared. In other words, then, already the presupposition
that an effect can be associated uniquely with a single variable is misleading.

2. Sequential transitions

1. Sequential binary choices. I now turn to models of sequential transitions. I begin with
considering three consecutive learning frames, σj (j = 1, 2, 3), and two binary variables, Ṫ1 and
Ṫ2: Ṫj = 1 if there is a transition from σj to σj+1, and Ṫj = 0 if there is no transition into
another learning frame. I consider the following

Model 3

Ṫ1 Ṫ2

Z̈

Ẍ

66

??
--

���������1

���������1

PPPPPPPPPq

PPPPPPPPPq

The model has the same structure as Model 1, with Ṫj instead of Ẏj, but there is now the
constraint

Pr(Ṫ2=1 | Ẍ=x, Z̈=z, Ṫ1=0) = 0 (17)

2This understanding of ‘functional effects’ is therefore quite different from effect definitions in the potential
outcomes framework which are conceptually linked to particular individuals. For further discussion see Rohwer
(2012, Sec. 3).
3This formulation is used, e.g., by Cameron and Heckman (1998).
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Table 2 Fictitious data for the sequential transition model.

x z t1 t2 cases x z t1 t2 cases

0 0 0 0 500 1 0 0 0 300
0 0 0 1 0 1 0 0 1 0
0 0 1 0 200 1 0 1 0 140
0 0 1 1 300 1 0 1 1 560
0 1 0 0 400 1 1 0 0 100
0 1 0 1 0 1 1 0 1 0
0 1 1 0 200 1 1 1 0 90
0 1 1 1 400 1 1 1 1 810

and from this follows

E(Ṫ2| Ẍ=x, Z̈=z) = E(Ṫ2| Ẍ=x, Z̈=z, Ṫ1=1)E(Ṫ1| Ẍ=x, Z̈=z) (18)

2. Consideration of possible effects. In the same way as was discussed in the previous section,
one can distinguish conditional and unconditional effects of the exogenous variables on Ṫ2. For
example, the conditional effect of Ẍ is

∆s
c(Ṫ2; Ẍ [x′, x′′], Z̈=z, Ṫ1=1) := (19)

E(Ṫ2| Ẍ=x′′, Z̈=z, Ṫ1=1)− E(Ṫ2| Ẍ=x′, Z̈=z, Ṫ1=1)

and the unconditional effect is

∆s
u(Ṫ2; Ẍ [x′, x′′], Z̈=z) := E(Ṫ2| Ẍ=x′′, Z̈=z)− E(Ṫ2| Ẍ=x′, Z̈=z) (20)

In general, both conditional and unconditional effects are context-dependent, that is, depend on
values of Z̈. To illustrate, I use the fictitious data in Table 2:

Effects on first transition:

∆s(Ṫ1; Ẍ [0, 1], Z̈=0) = 0.70 − 0.50 = 0.20

∆s(Ṫ1; Ẍ [0, 1], Z̈=1) = 0.90 − 0.60 = 0.30

Conditionals effect on second transition:

∆s
c(Ṫ2; Ẍ [0, 1], Z̈=0, Ṫ1=1) = 0.80 − 0.60 = 0.20

∆s
c(Ṫ2; Ẍ [0, 1], Z̈=1, Ṫ1=1) = 0.90 − 0.67 = 0.23

Unconditional effect on second transition:

∆s
u(Ṫ2; Ẍ [0, 1], Z̈=0) = 0.56 − 0.30 = 0.26

∆s
u(Ṫ2; Ẍ [0, 1], Z̈=1) = 0.81 − 0.40 = 0.41

How to think of possible effects of Ṫ1? These effects are already defined by the set-up of the
model and need not to be estimated. Ṫ1 = 0 deterministically entails Ṫ2 = 0. Ṫ1 = 1, on
the other hand, is a necessary condition for Ṫ2 = 1, but has no further causal effect on the
probability distribution of Ṫ2. The role played by Ṫ1 in Model 3 is therefore quite different from
the role played by Ẏ1 in Model 1.

3. Models in terms of latent variables. Parametric models for the transition variables, Ṫj, are
often set up in terms of latent variables. This allows formulations which, in a sense, parallel
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(9) and (10), most easily in pseudo-indeterministic forms (based on assuming ‘residual’ random
variables). For example:

Ṫ ∗
1 = α1 + xβ1 + zγ1 + U̇1 (21)

Ṫ ∗
2 = α2 + xβ2 + zγ2 + U̇2 (22)

Ṫ ∗
1 and Ṫ ∗

2 are the latent variables which are linked to the binary transition variables by Ṫ1 =
I[Ṫ ∗

1 ≥ 0] and Ṫ2 = I[Ṫ ∗
2 ≥ 0]. U̇1 and U̇2 are random variables with distribution functions F1

and F2, respectively. The distributions are most often assumed to be symmetrical around a zero
mean. This then entails:

E(Ṫ1|x, z) = F1(α1 + xβ1 + zγ1) (23)

E(Ṫ2|x, z, Ṫ1=1) = F2(α2 + xβ2 + zγ2) (24)

showing that F1 and F2 simply serve as functions linking the explanatory variables to the
binomial distributions of the outcome variables.

However, even when using latent variables there remains an essential difference between models
1 and 3. Model 1 relates to a generic individual that participates in both learning frames, and
this allows one to think of a joint distribution of the two educational outcomes, Ẏ1 and Ẏ2. Now
consider the sequential transition model 3. In this model, Ṫ1=0 deterministically entails Ṫ2=0.
While one can nevertheless think of a joint distribution of Ṫ1 and Ṫ2, there is no corresponding
joint distribution of the latent variables, Ṫ ∗

1 and Ṫ ∗
2 . If Ṫ ∗

1 < 0, there is no transition and
consequently no second latent variable, Ṫ ∗

2 .

The argument shows that model specifications for the sequential transition model cannot sensibly
begin with assuming a joint distribution for latent transition variables.4

4. Describing selection processes. In the sequential transition model, the transition variables can
be interpreted as representing selections: if Ṫj =1, an individual is selected into a subsequent
learning frame. However, in order to actually consider a selection process one needs a collection
of individuals, say Ω, and statistical variables corresponding to the model’s exogenous variables.
As an example, one can use the data in Table 2 which provide values for

(X,Z, T1, T2) : Ω −→ {0, 1}4 (25)

Based on information about these variables one can describe how the distributions of the exoge-
nous variables change in the consecutive learning frames. In this example:

t1 t2 P(X=1|T1= t1, T2= t2) P(Z=1|T1= t1, T2= t2)

σ1 0 0 0.308 0.385
σ2 1 0 0.365 0.460
σ3 1 1 0.662 0.585

Assuming that X=1 represents ‘high SES’, and Z=1 ‘high aspiration’, this would mean that the
selection process leads to larger proportions of individuals with ‘high SES’ and ‘high aspiration’.

In order to formulate a general relationship between effects on transitions and subsequent selec-
tions, I consider the unconditional effects

∆s
u(Ṫj ; Ẍ[x′, x′′], Z̈=z) := E(Ṫj | Ẍ=x′′, Z̈=z)− E(Ṫ2| Ẍ=x′, Z̈=z) (26)

4As an example, I refer to Holm and Jaeger (2011) who proposed to begin with assuming a joint normal
distribution for the latent transition variables.
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Figure 1 Unconditional and conditional density functions of Z and their mean values
as described in the text.

Given corresponding statistical variables, as defined in (25), there is the following simple rela-
tionship:

∆s
u(Ṫj ; Ẍ[x′, x′′], Z̈=z) > 0 ⇐⇒

P(X=x′′|Tj=1, Z=z)

P(X=x′|Tj=1, Z=z)
>

P(X=x′′|Z=z)

P(X=x′|Z=z)

This is easily understandable: If individuals with Ẍ=x′′ have a higher probability for making
the transition Tj = 1 than individuals with Ẍ = 0, they will become relatively more frequent
conditional on Tj=1.

Note, however, that this relationship has no implications for a comparison of effects across

transitions. In general, the conditional effect defined in (19) can be greater or smaller than the
effect of Ẍ on the first transition.

5. Consequences of omitted variables. Also in the sequential transition model one can think
about omitted variables. This is often a concern in the literature.5 Considerations parallel the
discussion of omitted variables in the models of sequential educational outcomes, and the results
of § 1.5 and the conclusions of § 1.7 can be applied without any essential modification.

It might nevertheless be interesting to consider a further example. For this example, I start from
(23) and (24) and assume logit specifications. Corresponding to Ẍ I assume a binary variable, X,
with P(X=1) = 0.5; and corresponding to Z̈ I assume a continuous variable, Z, with a standard
normal density, f(z), independent of X. For the parameters I choose α1 = β1 = γ1 = 1 and
α2 = β2 = γ2 = 1.

Conditional on T1 =1 both distributions change. Instead of P(X =1) = 0.5, there is a higher
value P(X = 1|T1 = 1) = 0.55. How the distribution of Z changes is shown in Figure 1. The
figure also shows that X and Z are no longer independent. Both conditional mean values have
increased: M(Z|T1 =1,X =0) = 0.255, and M(Z|T1 =1,X =1) = 0.137. The difference is due
to a negative correlation between X and Z which, in this example, results from conditioning on
T1.

Now assume that Z is not observed. The conditional effect of Ẍ on the second transition that

5E.g., Mare (1993), Cameron and Heckman (1998), Holm and Jaeger (2011).
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can be estimated is then given by

E(Ṫ2|Ẍ=1, Ṫ1=1)− E(Ṫ2|Ẍ=0, Ṫ1=1) = (27)
∫

z

E(Ṫ2|Ẍ=1, Ż=z, Ṫ1=1) f(z|Ẍ=1, Ṫ1=1) dz −

∫

z

E(Ṫ2|Ẍ=0, Ż=z, Ṫ1=1) f(z|Ẍ=0, Ṫ1=1) dz

In our example, this effect has the value

0.1185 = 0.8630 − 0.7445

Of course, one can argue that this effect is not only due to Ẍ but also to the selection effect
that shows up in the different conditional distributions of Ż. In our example, these effects can
be separated by using f(z|x) instead of f(z|x, Ṫ1 = 1). Instead of (27), one then calculates a
counterfactual effect with

∫

z

E(Ṫ2|Ẍ=1, Ż=z, Ṫ1=1) f(z|Ẍ=1) dz −

∫

z

E(Ṫ2|Ẍ=0, Ż=z, Ṫ1=1) f(z|Ẍ=0) dz (28)

In our example, one finds the value

0.1478 = 0.8445 − 0.6967

which is obviously larger. The difference can be attributed to the selection effect.

However, it would not be sensible to think of the effect calculated with (27) as a ‘biased estimate’
of the effect defined by (28). The latter effect is purely counterfactual, and could only be
calculated if Z̈ had been observed.

3. Primary and secondary effects

The models discussed in Section 2 make transition probabilities directly dependent on variables
representing the family background (e.g. parents’ SES and educational levels). It is highly
plausible, however, that transition probabilities also depend on the educational outcomes in
earlier learning frames. This idea has lead to a longstanding debate about how effects of the
family background are mediated.

Following Boudon (1974), researchers often focus on a distinction between primary and secondary
effects (see, e.g., Baumert et al. 2003, Erikson et al. 2005, Jackson et al. 2007, Erikson and
Rudolphi 2010, Schindler and Reimer 2010, Neugebauer 2010). I take up this discussion in the
present section and consider two different modeling approaches. Then, in Section 4, I discuss an
enlarged version of the sequential transition model of Section 2 in which a distinction between
primary and secondary effects is explicitly represented.

1. An often used modeling approach. Researchers often use a model that basically has the
following structure:

Model 4

Ṫ

Ż

Ẍ --

??�����*

����*

Ṫ is a binary dependent variable representing the transition of interest, for example, Ṫ = 1 if
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there is a transition from lower to higher secondary education, and Ṫ = 0 otherwise. There are
two main explanatory variables:

Ẍ is an exogenous explanatory variable that represents some aspect of the family background,
e.g., fathers occupational class (Erikson et al. 2005), or parents’ educational level (Klooster-
man et al. 2009, Neugebauer 2010).

Ż is an endogenous explanatory variables which represents the ‘level of academic performance’
an individual has reached in the situation where the transition is to be made. Values are often
based on a scholastic aptitude test.

This model is then used to distinguish two kinds of effects of Ẍ. A primary effect concerns the
dependence of Ż on Ẍ . For example, comparing x′ and x′′, the primary effect could be defined
as

E(Ż|Ẍ=x′′)− E(Ż|Ẍ=x′)

The secondary effect concerns the effect of Ẍ on Ṫ , while Ż is in some way fixed. For example,

Pr(Ṫ =1|Ẍ=x′′, Ż=z)− Pr(Ṫ =1|Ẍ=x′, Ż=z)

2. Representing transition opportunities. Model 4 presupposes a direct link between ‘academic
performance’ and the transition variable. A different modeling approach attempts to represent
the individual’s choice situation. I assume that this can be done with a binary variable, say Ċ,
such that Ċ=1 if an individual has the choice to opt for the transition of interest. So one can
distinguish between (a) the dependence of Ċ on Ẍ (‘primary effect’), and (b) the dependence
of Ṫ on Ẍ given that Ċ = 1 (‘secondary effect’). Assuming that Ċ depends in some way on
‘academic performance’, Ż, leads one to the following model:

Model 5

Ṫ

Ż

Ẍ

Ċ

--

??
-

66

Instead of a direct link between Ż and Ṫ , there is now a mediating binary variable, Ċ. For
subsequent illustrations, I assume a simple deterministic relationship between Ż and Ċ:

Ċ = I[Ż ≥ z0]

where z0 is a threshold value. I[. . .] denotes the indicator function; in this example: I[Ż ≥ z0]
takes the value 1 if Ż ≥ z0 and is otherwise zero.

Instead of the definitions given in § 3.1, one now gets quite different expressions for primary and
secondary effects. Assuming that Ż is a discrete variable, the primary effect is given by

Pr(Ċ=1|Ẍ=x′′)− Pr(Ċ=1|Ẍ=x′) =
∑

z≥z0

(

Pr(Ż=z|Ẍ=x′′)− Pr(Ż=z|Ẍ=x′)
)

And, since the model entails that Pr(Ṫ=1|Ċ=0) = 0, the secondary effect is given by

Pr(Ṫ =1|Ẍ=x′′, Ċ=1)− Pr(Ṫ =1|Ẍ=x′, Ċ=1)

Notice that, given Ċ, this effect is now independent of Ż. (A model that assumes an additional
dependence of Ṫ on Ż will be considered below.)
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Table 3 Values of conditional probabilities assumed in Model 5.

x µx Pr(Ċ=1 | Ẍ=x) Pr(Ṫ=1 | Ċ=1, Ẍ=x) Pr(Ṫ=1 | Ẍ=x)

0 0.00 0.84 0.5 0.42
1 0.05 0.85 0.6 0.52
2 0.10 0.87 0.7 0.60
3 0.15 0.88 0.8 0.70
4 0.20 0.89 0.9 0.80

3. Numerical illustration with simulated data. The two models can lead to quite different con-
clusions. For illustration, I use Model 5 to create artificial data. Ẍ ∈ {0, 1, 2, 3, 4}. For Ẍ=x,
Ż is normally distributed with mean µx and variance 1. Threshold value: z0 = −1. Table
3 shows the values assumed for µx in column 2, and the assumed conditional probabilities
Pr(Ṫ=1 | Ċ =1, Ẍ= x) in column 4 (these are the values resulting from the simulation). This
allows deriving values for the remaining conditional probabilities. The relationship is given by

Pr(Ṫ =1|Ẍ=x) = Pr(Ṫ =1|Ċ=1, Ẍ=x) Pr(Ċ=1|Ẍ=x)

Obviously, in this example almost all effects are secondary.

Now I assume Model 4 instead of 5 and use a logit model to specify a continuous dependence of
the probability of Ṫ =1 on values of Ż and dummy variables Xj := I[Ẍ=j]:

Pr(Ṫ=1|Ẍ=x, Ż=z) ≈
exp(X0β0 +X1β1 +X2β2 +X3β3 +X4β4 + Zγ)

1 + exp(X0β0 +X1β1 +X2β2 +X3β3 +X4β4 + Zγ)

In order to calculate parameters, I use, for each value of Ẍ, 10000 cases, randomly generated
according to the assumptions in Table 3.6 The estimated parameters are:

β̂0 = −0.3696, β̂1 = 0.0503, β̂2 = 0.3719, β̂3 = 0.8352, β̂4 = 1.3610, γ̂ = 0.7586

Figure 2 shows, for Ẍ=1 and Ẍ=4, how the estimated probabilities depend on values of Ż.

Compared with Model 5, the results are quite different. In Model 5, if Ż ≥ z0, there is no further
effect of Ż on Ṫ . The logit model, in contrast, suggests that Ż has always an important effect,
even conditional on values of Ẍ . For example:

Pr(Ṫ=1|Ż=1, Ẍ=1)− Pr(Ṫ=1|Ż=0, Ẍ=1) = 0.2

Pr(Ṫ=1|Ż=1, Ẍ=4)− Pr(Ṫ=1|Ż=0, Ẍ=4) = 0.1

Correspondingly, the logit model underestimates secondary effects. Consider, for example, the
effect

Pr(Ṫ=1|Ż=1, Ẍ=4)− Pr(Ṫ=1|Ż=1, Ẍ=1)

While its value is 0.9 − 0.6 = 0.3 in Model 5, the logit model suggests the value 0.2.

4. Hypothetical effect combinations. In order to illustrate the relative importance of primary
and secondary effects, some authors have suggested to consider hypothetical effect combinations
(Erikson et al. 2005, Jackson et al. 2007, Kloosterman et al. 2009, Schindler and Reimer 2010).
This can easily be done with Model 5. One can calculate

H ′(x, x′) := Pr(Ṫ =1 | Ċ=1, Ẍ=x′) Pr(Ċ=1 | Ẍ=x)

6Individual values of Ṫ , say ti for an individual i with covariate values xi and zi, are generated as follows: ti = 1
if zi ≥ −1 and ri ≤ Pr(Ṫ=1 | Ċ=1, Ẍ=xi), where ri is a random number equally distributed in [0, 1]; otherwise
ti = 0.
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Figure 2 Distribution of Ż for Ẍ=1 (solid line) and Ẍ= 4 (dashed line). Also shown:

exp(β̂1 + zγ̂)/(1 + exp(β̂1 + zγ̂)) (solid) and exp(β̂4 + zγ̂)/(1 + exp(β̂4 + zγ̂)) (dashed).

and interpret this as the probability of Ṫ =1 under the assumption that the primary effect is
given by Ẍ=x and the secondary effect is given by Ẍ=x′.

A similar calculation can be done with Model 4 by exploiting the knowledge of the conditional
distributions of Ż. In our example, it was assumed that, depending on Ẍ = x, Ż is normally
distributed with density φ(z;µx, 1). So one can calculate

H(x, x′) :=

∫

z

Pr(Ṫ =1 | Ẍ=x′, Ż=z)φ(z;µx, 1) dz (29)

and interpret this as the probability of Ṫ =1 under the assumption that the primary effect is
given by x and the secondary effect is given by x′.

The quantities H(x, x′) and H ′(x, x′) can be used for a decomposition of the total effect which is
analogous to the decomposition into a direct and an indirect effect that was discussed in Rohwer
(2012: 16f):

H(x′′, x′′)−H(x′, x′) = [H(x′′, x′′)−H(x′, x′′)] + [H(x′, x′′)−H(x′, x′)] (30)

(analogous for H ′). The first term on the right-hand side is the primary effect that corresponds
to the indirect effect of Ẍ , the second term is the secondary effect that corresponds to the direct
effect of Ẍ .

Values of H(x, x′) and H ′(x, x′) for our example are shown in Table 4. To illustrate, I consider
decompositions of H(4, 4) −H(1, 1):

primary secondary total

Model 4 0.016 0.258 0.274
Model 5 0.036 0.255 0.291

This confirms that in our example the secondary effect is much greater than the primary effect.

5. Comparing the two models. Models 4 and 5 are different in several respects. First, there are
different data requirements. Model 4 only requires some measure of ‘academic performance’.
This can be based on institutionalized scholastic aptitude tests, or tests developed and performed
by a researcher. In contrast, the primarily important data requirement for Model 5 concerns
the variable Ċ which represents the choice situation.

A second point concerns the interpretation. Model 5 is based on a conceptually clear distinction
between primary and secondary effects: primary effects concern the generation of opportunities,
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Table 4 Hypothetical probabilities of Ṫ = 1 when assuming that primary effects depend on
Ẍ=x and secondary effects depend on Ẍ=x′. Calculations based on data in Table 3.

Model 4 Model 5

x H(x, 1) H(x, 4) H ′(x, 1) H ′(x, 4)

0 0.513 0.773 0.425 0.756
1 0.521 0.779 0.510 0.765
2 0.529 0.785 0.595 0.783
3 0.536 0.789 0.680 0.792
4 0.545 0.795 0.765 0.801

secondary effects concern the actually performed choices. There is no correspondingly clear
distinction in Model 4. The idea that the chosen transition in some way depends on ‘academic
performance’ is not easily interpretable.

This reflects a deeper distinction between the two models. Model 5 can be understood as an
analytical model that aims to understand effects of the family background both on the generation
and use of educational transition opportunities. In contrast, Model 4 aims to attribute the
actually performed transitions to two sources: a ‘meritocratic’ source represented by ‘academic
performance’, and any further factors which cannot be justified from a meritocratic view.7

6. Model specification and observed correlations. Model 5 assumes that Ċ, representing the
choice situation, solely depends on ‘academic performance’ (Ż). It is well possible, of course,
that observations suggest that Ċ depends on Ẍ in ways not mediated through Ż (see Ditton et
al. (2005) for some empirical evidence). One might then consider the following modified model:

Model 6

Ṫ

Ż

Ẍ

Ċ

--

??
--

66
HHHHHj

HHHHHj

There is then no longer a deterministic relationship between Ċ and Ż; and the ‘primary effect’ of
Ẍ (as defined at the beginning of this section) cannot be interpreted solely in terms of ‘academic
performance’. Nevertheless, it is still possible to separate a primary and a secondary effect as
suggested in § 3.2.

But now assume that observations suggest a correlation between Ż and Ṫ even conditional
on Ċ = 1. There are then different possibilities to modify Model 5, corresponding to different
theoretical ideas. One possibility is to add an arrow from Ż to Ṫ . This would reflect the
hypothesis that the degree of ‘academic performance’ not only determines the possibility of a
choice, but in addition influences the final decision. A quite different possibility is to suppose
an unobserved variable, say Ü , which, like Ẍ influences both Ż and Ṫ . This would suggest the
following model:

7Sometimes this interest in meritocratic evaluations is explicitly mentioned, see e.g. Schindler and Reimer
(2010: 624).
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Model 7

Ṫ

Ż

Ẍ

Ü

Ċ

--

??
-

66������
��*��*

The example demonstrates that it is insufficient to think in terms of correlation (observed
or theoretically postulated). There are always several different dependency relations between
variables that can generate the observed correlations.

4. Educational outcomes and transitions

I now consider an enlarged version of the transition model that was discussed in Section 2 which
includes effects of the educational outcome of a foregoing learning frame.

1. Including educational outcomes. I consider the following model which is a combination of the
models considered in sections 1 and 2:

Model 8

Ẏ1

Ṫ1

Ẏ2

Ṫ2

Z̈

Ẍ

�
���

�
��

�
���

�
��

HHHHHj

HHHHHj 6666

66

?? ??

??

66

??
--

As before, Ẏj is the educational outcome, and Ṫj represents the transition. The model entails
the following constraint: Ẏ2 and Ṫ2 are only defined if Ṫ1 = 1. This must be taken into account
when defining conditional effects on Ẏ2 and Ṫ2.

2. Specification of dependency relations. Remembering the discussion of primary and secondary
effects in Section 3, a critical question concerns how to specify the relationship between the
educational outcome of a learning frame, Ẏj, and the subsequent transition, Ṫj . Here I assume
that a minimal level, say λj, is a necessary condition for making a transition:

Ṫj = 0 if Ẏj < λj (31)

and that the probability of Ṫj=1 depends in some way on the difference, Ẏj − λj . To illustrate
a possible specification, I use

Pr(Ṫj=1|Ẍ=x, Z̈=z, Ẏj=yj) = Fj(αj + xβj + zγj + ηj(yj − λj)) I[yj ≥ λj ] (32)

where Fj is a link function (e.g., a normal or logistic distribution function).

A further question concerns the specification of how educational outcomes depend on previous
conditions. In contrast to the models considered in Section 1, it is no longer sufficient to focus
only on the expectation of Ẏj ; one needs at least a specification of how the probability of Ẏj ≥ λj

depends on explanatory variables.

3. Primary and secondary effects. Model 8 can be used to consider the distinction between
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primary and secondary effects of SES that was introduced in Section 3. Primary effects concern
the effect of Ẍ on the opportunity to make a transition. For the first transition, this effect can
be defined by

∆s(I[Ẏ1 ≥ λ1]; Ẍ [x′, x′′], Z̈=z) := (33)

Pr(Ẏ1 ≥ λ1| Ẍ=x′′, Z̈=z)− Pr(Ẏ1 ≥ λ1| Ẍ=x′, Z̈=z)

Secondary effects, on the other hand, concern the effect of Ẍ on actually making the transition,
given that there is an opportunity. For the first transition, this effect can be defined by

∆s
c(Ṫ1; Ẍ [x′, x′′], Z̈=z, Ẏ1 ≥ λ1) := (34)

Pr(Ṫ1=1| Ẍ=x′′, Z̈=z, Ẏ1 ≥ λ1)− Pr(Ṫ1=1| Ẍ=x′, Z̈=z, Ẏ1 ≥ λ1)

The secondary effect is conditional on Ẏ1 ≥ λ1 and must be distinguished from the unconditional
effect

∆s
u(Ṫ1; Ẍ [x′, x′′], Z̈=z) := Pr(Ṫ1=1| Ẍ=x′′, Z̈=z)− Pr(Ṫ1=1| Ẍ=x′, Z̈=z) (35)

This is the effect that would be estimated when using the sequential transition model that was
considered in Section 2 and which does not allow distinguishing between primary and secondary
effects.

To illustrate, I assume that the relationship between Ẏ1 and Ṫ1 is given by (32), and Ẏ1 is
normally distributed with mean

E(Ẏ1|Ẍ=x, Z̈=z) = αy
1 + xβy

1 + zγy1 (36)

and a unit variance. The primary effect can then be calculated from

Pr(Ẏ1 ≥ λ1| Ẍ=x, Z̈=z) = Φ(αy
1 + xβy

1 + zγy1 − λ1) (37)

(where Φ denotes the standard normal distribution function), the unconditional effect can be
calculated from

Pr(Ṫ1=1| Ẍ=x, Z̈=z) =
∫

y≥λ1

Pr(Ṫ1=1| Ẍ=x, Z̈=z, Ẏ1=y) f(y|x, z) dy =

∫

y≥λ1

F1(αj + xβj + zγj + ηj(y − λj))φ(y − (αy
1 + xβy

1 + zγy1 )) dy

(where φ denotes the standard normal density function), and the secondary effect can be calcu-
lated from

Pr(Ṫ1=1| Ẍ=x′′, Z̈=z, Ẏ1 ≥ λ1) =
Pr(Ṫ1=1| Ẍ=x, Z̈=z)

Pr(Ẏ1 ≥ λ1| Ẍ=x, Z̈=z)

For a numerical illustration, I use a logit specification for F1 and assume α1 = β1 = γ1 = η1 = 1,
and αy

1 = 0.5, βy
1 = γY1 = 0.7, λ1 = 1. For z=0, one finds:

x Pr(Ẏ1 ≥ λ1|x, z) Pr(Ṫ1=1|x, z, Ẏ1 ≥ λ1) Pr(Ṫ1=1|x, z)

−1 0.115 0.617 0.071
0 0.309 0.825 0.255
1 0.579 0.940 0.544
2 0.816 0.982 0.801
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Figure 3 Dependence of the marginal effect (38), with Z̈ = 0, on values of σ.
Parameters: αy

1
= 0.5, βy

1
= γy

1
= 0.7, λ1 = 1.

Effects depend on x, for example:

∆s(I[Ẏ1 ≥ λ1]; Ẍ [0, 1], Z̈=0) = 0.579 − 0.309 = 0.270

∆s
c(Ṫ1; Ẍ[0, 1], Z̈=0, Ẏ1 ≥ 1) = 0.940 − 0.825 = 0.115

∆s
u(Ṫ1; Ẍ [0, 1], Z̈=0) = 0.544 − 0.255 = 0.289

4. Educational outcomes and primary effects. Given the understanding that primary effects
concern opportunities for transitions, they must be distinguished from effects on educational
outcomes. This can be illustrated with the specifications assumed in the previous paragraph.
Using (36) for the educational outcome, Ẏ1, the marginal effect of Ẍ is βy

1 . In contrast, using
(37), the marginal effect of Ẍ on I[Ẏ1 ≥ λ1] is

∂Pr(Ẏ1 ≥ λ1| Ẍ=x, Z̈=z)

∂x
= φ(αy

1 + xβy
1 + zγy1 − λ1)β

y
1 (38)

This shows that the primary effect is not only determined by βy
1 , but also by values of explanatory

variables and, most important, by λ1.

This also entails that the primary effect depends on the degree of inequality in the educational
outcomes. This can be illustrated by introducing a parameter for the variance of Ẏ1:

Ẏ1 = αy
1 + xβy

1 + zγy1 + σU̇1 (39)

where U̇1 is a normally distributed random variable with unit variance. The derivation of (37)
was based on σ = 1. Starting from (39), one gets

Pr(Ẏ1 ≥ λ1| Ẍ=x, Z̈=z) = Φ
( 1

σ
[αy

1 + xβy
1 + zγy1 − λ1]

)

(40)

Consequences of an increasing variance of the educational outcomes depend on the expectation
of Ẏ1:

if E(Ẏ1|x, z) > λ1, the probability of Ẏ1 ≥ λ1 decreases, and

if E(Ẏ1|x, z) < λ1, the probability of Ẏ1 ≥ λ1 increases.

Also the marginal effects of the explanatory variables depend on the variance of the educational
outcomes. Figure 3 illustrates how the marginal effect of Ẍ, as defined in (38), depends on
values of σ. Notice that these effects also depend on values of Z̈.
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