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Rohwer

Estimating Effects with Logit Models

Abstract

Invited by the National Educational Panel Study (NEPS), during the Winter 2011/12, the author
gave a series of lectures about ‘Statistical methods in sociological research of education’. This
paper comprises an elaboration of one of these lectures discussing the understanding of logit
models which are often used in educational research. More specifically, the paper contributes to
an ongoing debate which concerns the comparison of explanatory variables across nested logit
models. The focus often is on model parameters (and log odd ratios which are directly connected
with such parameters). The present paper argues that this focus can be easily misleading when
comparing models and instead takes effects, defined as differences of conditional expectations,
as the quantities of main interest.
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Rohwer

Invited by the National Educational Panel Study (NEPS), during the Winter 2011/12, I gave
a series of lectures about ‘Statistical methods in sociological research of education’. This text
comprises an elaboration of one of these lectures discussing the understanding of logit models
which are often used in educational research. More specifically, the paper contributes to an on-
going debate which concerns the comparison of explanatory variables across nested logit models.
The focus often is on model parameters (and log odd ratios which are directly connected with
such parameters). The present paper argues that this focus can be easily misleading when com-
paring models and instead takes effects, defined as differences of conditional expectations, as the
quantities of main interest.

1. Defining effects with logit models

I use the notation for functional models as introduced in Rohwer (2012). The most simple
logit model corresponds to a functional model Ẍ −→→ Ẏ . Ẍ is the explanatory variable, Ẏ is the
binary outcome variable. As an example, one can think that the model concerns the dependence
of children’s success in school (Ẏ = 1 if success, Ẏ = 0 otherwise) on parents’ educational level
represented by Ẍ (e.g. 0 low, 1 high). The functional model posits a functional relationship

x −→ Pr(Ẏ =1|Ẍ=x) = E(Ẏ |Ẍ=x) (1)

This function shows how the expectation of Ẏ depends on values of Ẍ. In the present paper, the
interest concerns effects, that is, effects of changes (differences) of values of Ẍ on the distribution
of Ẏ . I use the notation

∆s(Ẏ ; Ẍ [x′, x′′]) := E(Ẏ |Ẍ=x′′)− E(Ẏ |Ẍ=x′) (2)

and refer to this as the stochastic (in contrast to: deterministic) effect of a change in the variable
Ẍ from x′ to x′′.

The logit model assumes a specific parametric representation of the functional relationship (1).
It is based on using a logistic link function

F (v) :=
exp(v)

1 + exp(v)

to approximate (1), resulting in the model

E(Ẏ |Ẍ=x) ≈ F (α+ xβx) (3)

Using here an equality sign instead of ≈ would presuppose that the model is ‘correctly specified’.
However, in particular when thinking of the possibility that further explanatory variables should
be included, this cannot be assumed just from the beginning.

The effect of a change in Ẍ from x′ to x′′, as defined in (2), is then approximated by

∆a(Ẏ ; Ẍ [x′, x′′]) := F (α+ x′′βx)− F (α+ x′βx)

where the ‘a’ is intended to indicate ‘approximation’.

I now consider the addition of another explanatory variable, say Z̈. To continue with the
example, one can imagine that the child’s success (Ẏ ) not only depends on the parents’ edu-
cational level (Ẍ), but also on the school type (Z̈). Graphically depicted, the model then is
(Ẍ, Z̈)−→→ Ẏ , and the corresponding functional relationship is

(x, z) −→ Pr(Ẏ =1|Ẍ=x, Z̈=z) = E(Ẏ |Ẍ=x, Z̈=z) (4)
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Table 1 Fictitious data for the illustration.

x z y cases

0 0 0 600
0 0 1 600
0 1 0 240
0 1 1 560
1 0 0 40
1 0 1 160
1 1 0 80
1 1 1 720

In contrast to the simple model (1), effects of Ẍ can now be defined only conditional on values
of Z̈:

∆s(Ẏ ; Ẍ [x′, x′′], Z̈=z) := E(Ẏ |Ẍ=x′′, Z̈=z)− E(Ẏ |Ẍ=x′, Z̈=z)

Again, one can use a logit model as a parametric approximation to (4). Including an interaction
term, the model is

E(Ẏ |Ẍ=x, Z̈=z) ≈ F (α∗ + xβ∗

x + zβ∗

z + xzβ∗

xz) (5)

Of course, since this model differs from (3), also the parameters must be distinguished. The
parameterized effect then is

∆a(Ẏ ; Ẍ [x′, x′′], Z̈=z) := F (α∗ + x′′β∗

x + zβ∗

z + x′′zβ∗

xz)− F (α∗ + x′β∗

x + zβ∗

z + x′zβ∗

xz)

To illustrate, I use the data shown in Table 1. Y represents the child’s success (Y = 1), X
represents the parents’ educational level (0 low, 1 high), and Z represents the school type (0 or
1). Nonparametric estimates can be derived directly from the observed frequencies as shown in
the following table:

x z E(Y |X=x,Z=z)

0 0 0.5
0 1 0.7
1 0 0.8
1 1 0.9

(6)

(Using the logit model (5) would result in identical estimates. Leaving out the interaction term
would lead to slightly different values.) One then finds the effects:

∆s(Ẏ ; Ẍ [0, 1], Z̈=0) = 0.8− 0.5 = 0.3

∆s(Ẏ ; Ẍ [0, 1], Z̈=1) = 0.9− 0.7 = 0.2

showing that there is no unique effect, but that the effect of the parents’ educational level
depends on the school type.

2. Parameters in reduced models

The parameters βx and β∗

x cannot immediately be compared and must be considered as belonging
to different models. In order to stress this point, I briefly criticize the idea that parameters

NEPS Working Paper No. 10, 2012 Page 4



Rohwer

in reduced models should be viewed as ‘biased estimates’ of corresponding parameters in more
comprehensive models. To illustrate the argument, I use an example taken fromMood (2010: 71).
The example assumes a correctly specified logit model

E(Ẏ |Ẍ=x, Z̈=z) = F (xβx + zβz) (7)

Values of Ẍ and Z̈ are taken from two independent standard normal distributions. Written with
a latent variable, the model is

Ẏl := xβx + zβz + L̇ (8)

where L̇ is a random variable with a standard logistic distribution, defined by Pr(L̇ ≤ l) = F (l),
implying that Ẏl ≥ 0 ⇐⇒ Ẏ = 1 (based on the symmetry of the distribution of L̇).1 Mood uses
this model with βx = 1 and three different values for βz. I begin with assuming that also βz = 1.

One can then consider a model which omits Z̈. Taken as a standard logit model, it can be
written in terms of a latent variable as

Ẏ r

l := xβr

x + L̇ (9)

Estimating this model with simulated data, Mood finds βr
x = 0.84, which is obviously less than

βx = 1, and concludes that the estimate is ‘clearly biased towards zero’ (p. 71).2 However, this
statement presupposes that (9) has the task to estimate βx as defined by (7), and this is at least
debatable.

Viewing (9) as a reduced version of (7), it provides estimates of probabilities which have a clear
and sensible meaning: they approximate probabilities which are averages w.r.t. the presupposed
distribution of the omitted variable. In the example, F (xβr

x) approximates

E
Ż
(Pr(Ẏ =1|Ẍ=x, Ż)) :=

∫

z

F (xβx + zβz)φ(z) dz (10)

where φ(z) denotes the standard normal density function. This shows that βr
x is the correct

parameter to be used when being interested in approximating the probabilities defined in (10).
Instead intending to estimate βx would not be sensible. In fact, knowing βx without also knowing
βz would be almost useless because F (xβx) provides a correct estimate only for the special case
where z = 0.

Note that the proposed interpretation of the reduced model (9) holds independently of the size of
βz. For example, assuming βz = 2, Mood finds βr

x = 0.61, even smaller than 0.84, but F (xβr
x) is

still an (actually very good) approximation to the average w.r.t. the omitted variable as defined
in (10).

3. Comparing effects across models

I now consider the question of how to compare the effects of Ẍ across the two models, (1) and
(4). Obviously, an immediate comparison is not possible because in model (4) effects also depend
on values of Z̈. One therefore needs to define composite effects based on a reduced version of

1It is often said that the variance of the latent variable Ẏl is ‘not identified’ (e.g., Allison 1999, Cramer 2007).
This is true in the following sense: When starting from a regression model Ẏl = xβx + zβz + ǫ with an arbitrary
residual variable ǫ, and observations (values of Ẏ ) only provide information about the sign of Ẏl, the variance of
this variable cannot be estimated. The statement is misleading, however, when the latent variable is derived from
a logit model. If Ẏl is defined by (8), a variance of Ẏl does exist only conditional on values of the explanatory
variables, and is already known from the model’s definition: Var(Ẏl|Ẍ=x, Z̈=z) = Var(L̇) = π2/3.
2For similar views see Allison (1999), Cramer (2007), Wooldridge (2002: 470).
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(4). This requires to think of Z̈ as a random variable, say Ż, that has an associated distribution.
Taking into account that the distribution of Ż could depend on values of Ẍ, one can start from
the equation

E(Ẏ |Ẍ=x) =
∑

z
E(Ẏ |Ẍ=x, Ż=z) Pr(Ż=z|Ẍ=x) (11)

Here I assume that Ż is a discrete variable as it is the case in the school example; if Ż is
continuous, as it is the case in Mood’s example, one would use an integral instead of the sum.
The effect defined in (2) can then be expressed as

∆s(Ẏ ; Ẍ [x′, x′′]) =
∑

z
E(Ẏ |Ẍ=x′′, Ż=z) Pr(Ż=z|Ẍ=x′′)− (12)

∑

z
E(Ẏ |Ẍ=x′, Ż=z) Pr(Ż=z|Ẍ=x′)

A simpler formulation is possible if Ż is independent of Ẍ . The composite effect is then an
average of the conditional effects:

∆s(Ẏ ; Ẍ [x′, x′′]) =
∑

z
∆s(Ẏ ; Ẍ[x′, x′′], Ż=z) Pr(Ż=z) (13)

Note, however, that even in this case the effect of Ẍ depends on the distribution of Ż (presup-
posing that the effect of Ẍ depends on Ż).

To illustrate, I use Mood’s example where Ż has a normal distribution independent of Ẍ.
Corresponding to (13) one finds the approximation

∆s(Ẏ ; Ẍ [x′, x′′]) ≈

∫

z

(F (x′′βx + zβz)− F (x′βx + zβz))φ(z) dz

showing how effects of Ẍ also depend on the distribution of Ż. For example, assuming Ż ∼
N (0, 1), one finds ∆s(Ẏ ; Ẍ [0, 1]) ≈ 0.7−0.5 = 0.2, but the effect will increase when the variance
of Ż becomes smaller and, conversely, will decrease when the variance becomes larger.

4. Correlated explanatory variables

In social research, explanatory variables are most often correlated, and the simple relationship
(13) does not hold. A first problem then concerns how to think of correlations between observed
explanatory variables. A further problem that will be deferred to a later section concerns possibly
relevant omitted variables which, presumably, are correlated with already included explanatory
variables.

How to take into account correlations between observed explanatory variables depends on the
purpose of the model to be estimated. One purpose of a model could be to describe the relation-
ship between a dependent and several explanatory variables as found in a given data set (and
assumed to exist in a correspondingly defined population). Given this purpose, one can ignore
correlations between explanatory variables and, assuming two such variables, refer to a model
as follows:

Model 1

Ẏ

Z̈

Ẍ --

�����*

����*

The model only concerns the dependency of the probability distribution of Ẏ on values of the two
explanatory variables and does not entail anything about relationships between these variables.
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In other words, the explanatory variables are treated as exogenous variables without associated
distributions; and this entails that the model cannot be used to think about correlations between
these variables. Of course, the model can be estimated also with data exhibiting correlations
between the explanatory variables. Think for example of the data in Table 1 where the statistical
variables corresponding to Ẍ and Z̈ are correlated.

Another purpose of a model could be to investigate effects of variables as defined in the first
section. For example, one might be interested in the question of how the expectation of Ẏ (the
child’s success) depends on a change, or difference, in the variable Ẍ (the parents’ educational
level). Obviously, Model 1 cannot be used to answer this question because the effect also depends
on values of Z̈. The observation of correlations between explanatory variables then leads to an
important question: Can values of Z̈ be fixed when referring to the effect of a change in the
value of Ẍ?

Of course, given a function like (4), one can easily think of changes in values of Ẍ , and conse-
quently of effects of Ẍ, while holding Z̈ = z fixed. However, in a more relevant understanding
the question does not concern possibilities to manipulate formulas, but the behavior of the
social processes which actually generate values of the variables represented in a model (see Ro-
hwer 2010: 82ff). In this understanding, the question motivates to consider more comprehensive
models which include assumptions about relationships between explanatory variables.

There are several different possibilities. Here I briefly consider two. The first one can be depicted
as follows:

Model 2

Ẏ

Ż

Ẍ --

??�����*

����*

Ẍ is still an exogenous variable, but Z̈ has now changed into an endogenous stochastic variable,
Ż. In addition to the function (4), there is now another function

x −→ Pr(Ż=z|Ẍ=x) (14)

showing how the distribution of Ż depends on values of Ẍ. In our example, based on the data
in Table 1, one finds Pr(Ż=1|Ẍ=0) = 0.4 and Pr(Ż=1|Ẍ=1) = 0.8, showing how the child’s
school type depends on the parents’ educational level.

Given this model, a change in Ẍ entails a change in the distribution of Ż and it is not possible
to fix Ż = z when considering an effect of Ẍ . Consequently, when considering this model, one
can only define a total effect of a change in Ẍ, and this total effect equals the effect (12) which
is derived from a reduced model resulting from omitting Ż; in the example: ∆s(Ẏ ; Ẍ [0, 1]) ≈
0.88 − 0.58 = 0.3. In other words, assuming Model 2, marginalization w.r.t. Ż is required in
order to define the effect of interest.

The situation is less clear when considering a model in which the explanatory variable of interest
is endogenous, for example:

Model 3

Ẏ

Z̈

Ẋ --

66
�����*

����*

While the model can well be used to define an effect of Z̈, there is no straightforward answer to
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Table 2 Modification of the data in Table 1.

x z y cases

0 0 0 257
0 0 1 257
0 1 0 360
0 1 1 840
1 0 0 17
1 0 1 69
1 1 0 120
1 1 1 1080

the question of how to define an effect of a change in Ẋ. One could fix Z̈= z and nevertheless
think of different values of Ẋ to be used for the calculation of an effect; but such effects are
conditional on Z̈=z and already available in Model 1. On the other hand, without a distribution
for Z̈, one cannot derive a reduced model. Thinking instead of a variable Ż that can be assumed
to have a distribution, the composite effect of Ẋ depends on the actual choice. For example,
deriving the distribution of Ż from the data in Table 1, one finds the composite effect 0.3. Using
instead the data in Table 2 (which entail the same functional relationships as specified in (6)),
one finds 0.25. Given this model, it seems best not to attempt to attribute to Ẋ a definite
(context-independent) effect.

For further illustration of correlated explanatory variables, I use a modification of Mood’s exam-
ple in which values of Ẍ and Z̈ are taken from a bivariate normal distribution with correlation
ρ 6= 0. One can again consider the reduced model (9). For example, assuming ρ = 0.5, one
finds βr

x = 1.32, now larger than βx = 1 (this also shows that omitting a variable not always
leads to an ‘attenuated parameter’). As I have argued above, this is not a ‘biased estimate’
of βx, but must be viewed as a parameter of the reduced model (9). In this understanding,
βr
x can be used to calculate a sensible approximation to the expectation (11). In the example,

E(Ẏ |Ẍ=0) ≈ F (0) = 0.5, and E(Ẏ |Ẍ = 1) ≈ F (1.32) = 0.79.

These values could be used to calculate the effect ∆s(Ẏ ; Ẍ [0, 1]) ≈ 0.79 − 0.5 = 0.29, obviously
larger than the value 0.2 that was calculated for Mood’s original model with uncorrelated ex-
planatory variables. In order to understand the difference, one needs an extended model that
allows one to interpret the correlation between the two explanatory variables. I consider Model
2 which is based on the assumption that the distribution of Ż depends on values of Ẍ. In the
example, the conditional density of Ż, given Ẍ = x, is a normal density φ(z;µ, σ) with µ = xρ
and σ =

√

1− ρ2, entailing that Ẍ and Ż are connected by a linear regression function.

This allows an easy interpretation of the effect. For example, if the value of Ẍ changes from 0
to 1, this entails a change in the mean value of Ż from 0 to ρ, and, if ρ > 0, the effect becomes
larger compared with a situation where ρ = 0. In any case, assuming that Ż depends on Ẍ
allows one to attribute the total effect to the change in Ẍ .

5. Comparing variables across models

Neither parameters nor effects can directly be compared across models. It is well possible,
however, to compare the role played by explanatory variables. For example, one can compare
the role played by Ẍ across the models (1) and (4). One can begin with a look at the estimated
parameters. Using the data in Table 1, one finds β̂x = 1.67 and β̂∗

x = 1.39. This does not show,
however, that Ẍ is ‘less important’ when one ‘controls for’ values of Z̈. The total effect of Ẍ
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Table 3 Modification of the data in Table 1.

x z y cases

0 0 0 400
0 0 1 600
0 1 0 100
0 1 1 400
1 0 0 200
1 0 1 300
1 1 0 200
1 1 1 800

is essentially identical in both models (differences only result from the parameterization of the
models). Of course, the enlarged model provides an opportunity to think of this total effect in
a more refined way.

Even if, by including a further variable, a parameter becomes zero one cannot conclude that
the corresponding variable has no effect. To illustrate, I use the data in Table 3. Using these
data to estimate (3) and (5), one finds β̂x = 0.32 and β̂∗

x = 0. This shows that the effect of Ẍ,
conditional on values of Z̈, is zero. There nevertheless is a relevant total effect of Ẍ , namely
∆s(Ẏ ; Ẍ [0, 1]) ≈ 0.73 − 0.67 = 0.06.

How to interpret this effect depends on assumptions about the relationship between Ẍ and Z̈.
In our example, assuming that the choice of a school type depends on the parents’ educational
level, one would use Model 2. The total effect of Ẍ can then be explained by the difference in
the probabilities Pr(Ż=1|Ẍ=0) = 1/3 and Pr(Ż=1|Ẍ=1) = 2/3.

6. Unobserved heterogeneity

So far, I have assumed observed explanatory variables. Further questions concern ‘unobserved
heterogeneity’. I take this expression to mean that there are further unobserved explanatory
variables that should be included in a model. So the question arises how the model would
change if these additional variables would have been included. A reliable answer is obviously
not possible, but a few remarks can be derived from the foregoing discussion.

As before, I only consider logit models and begin with assuming that the interest concerns
conditional expectations,

E(Ẏ |Ẍ=x) ≈ F (α+ xβx) (15)

When hypothetically adding a further explanatory variable, say Z̈, one gets a more comprehen-
sive model. However, in order to think of (15) as a reduced version of that model, one needs to
think of Z̈ as a variable Ż that can be assumed to have a distribution (given, e.g., by values of
Z̈ if such values could be observed). Equation (11) then shows that E(Ẏ |Ẍ=x) can be viewed
as a mean value w.r.t. the distribution of Ż; and consequently F (α+ xβx) can be viewed as an
approximation to this mean value. As an illustration remember Mood’s example. Not having
observed Z̈, one can estimate only the reduced model (9), but this model correctly provides an
approximation to the expectation defined in (10). As shown by (11), this remains true when Ż
is correlated with Ẍ .

The situation is more complicated when the interest concerns effects as defined in (2). First
assume that the hypothetically included unobserved variable Ż is independent of the variable
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Ẍ. As shown by (13), the effect derived from the reduced model can then be viewed as a
mean of effects which additionally condition on value of Ż. Of course, the not observed effects
∆s(Ẏ ; Ẍ [x′, x′′], Ż=z) can have quite different, even positive and negative, values. For example,
one can easily modify the data in Table 1 to get conditional expectations as follows:

x z E(Ẏ |Ẍ=x, Z̈=z)

0 0 0.7

0 1 0.8
1 0 0.6
1 1 0.9

entailing effects ∆s(Ẏ ; Ẍ [0, 1], Z̈ = 0) = −0.1 and ∆s(Ẏ ; Ẍ [0, 1], Z̈ = 1) = 0.1. The observed
effect is then positive if Pr(Ż=1) > 0.5 and negative otherwise.

When the omitted variable is correlated with observed explanatory variables, a critical question
concerns the sources of the correlation. To conceive of the observed effect of Ẍ as a total effect
requires the presupposition of a model in which the omitted variables functionally depends on Ẍ.
Otherwise, as I have argued above, no easy interpretation of the observed effect seems possible.
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