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Cluster-based Anchor Item IdenƟficaƟon and SelecƟon

Abstract
In order to compare scores of latent variables across groups or measurement occasions, the
respecƟve items presented to both groups or at both measurement occasions need to bemea-
surement invariant, that is, show no differenƟal item funcƟoning (DIF). In situaƟons where this
assumpƟon is violated, researcher may strive for parƟal measurement invariance by idenƟfy-
ing a set of items (anchor items) that are DIF-free. Different approaches for detecƟng DIF-free
items exists. These either make the assumpƟon of unbalanced DIF or the assumpƟon that the
majority of items is DIF-free. Recently, Bechger and Maris (2015) proposed an approach that
instead of idenƟfying DIF-free items idenƟfies clusters of items that funcƟon similarly. As such
they do not make the assumpƟon of unbalanced DIF or that the majority of items is DIF-free.
While this approach is very promising, it is not applicable, yet, for substanƟve research. 1.
There is no clear criterion for the idenƟficaƟon of clusters. 2. There are no criteria for choosing
a cluster as anchor for linking purposes. (a) We propose two procedures for cluster idenƟfi-
caƟon, that are, the k-means clustering approach and the range-and-step-threshold approach.
(b) We provide three selecƟon criteria (cluster homogeneity, cluster accuracy, and cluster size)
that may aid the choice of a cluster. For illustraƟon, we apply the approach on data of a linking
study in the NaƟonal EducaƟonal Panel Study comparing reading competence between grade
9 students and adults. The paper closes with a discussion of the advantages as well as the
limitaƟons of the proposed methods and a delineaƟon of further research areas.

Keywords
Item response theory, differenƟal item funcƟoning, parƟal measurement invariance, anchor
items, clustering
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1 IntroducƟon

Many educaƟonal large-scale assessments as for example the NaƟonal EducaƟonal Panel Study
(NEPS; Blossfeld, Roßbach, & von Maurice, 2011) or the Programme for InternaƟonal Student
Assessment (e.g., OECD (2012) aim at invesƟgaƟng differences in competence scores across
groups or Ɵme.

In order to compare groups (or constructs across Ɵme), the measures need to be on a com-
mon scale. Within an item-response theory (IRT) framework, various methods can be used to
achieve this (e.g., von Davier & von Davier, 2007). ParƟcularly, an oŌen employed design is the
so called anchor-item design, where respondents of two non-equivalent groups are presented
with the same items (e.g. Kolen & Brennan, 2004). It is assumed that the items presented to
both groups are measurement invariant across groups, that is they show no differenƟal item
funcƟoning (DIF). One way to analyze these data is to assume that some or all items have equal
itemparameters across groups, which forces the scales to be equal. These items are termed an-
chor items. If the invariance assumpƟon for anchor items does not hold, the group parameter
esƟmateswill be biased and comparisons of groups become an arƟfact of the scaling procedure
(e.g., Borsboom, 2006; Navas-Ara & Gómez-Benito, 2002; W.-C. Wang, 2004).

1.1 DIF-detecƟon methods and their assumpƟons

Many DIF detecƟon procedures have been developed (see, e.g., Magis, Béland, Tuerlinckx, &
De Boeck, 2010 or Kopf, Zeileis, & Strobl, 2015a) but no consensus on a gold-standard has been
found. Reasons for this can be found in the assumpƟons that aremade by the procedures. One
typically employed assumpƟon is that the mean difficulty of the items is equal in both groups
(equal-mean difficulty, EMD). Underlying this procedure is the assumpƟon of balanced DIF. This
means that on average the items do not favor one group over the other and the aggregated DIF
effect over all items cancels out. However, this assumpƟon has been considered unlikely and
in circumstances where it is violated, biased group comparisons will emerge (e.g., W.-C. Wang,
2004).

In the presence of DIF in some items, parƟal measurement invariancemay be an opƟon, where
only some of the items are selected as anchor items. This reduces the assumpƟon of all com-
mon items showing no DIF to the assumpƟon of only a set of items showing no DIF. The task of
idenƟfying these potenƟal anchor items has sprouted development of a variety of procedures.
One way of idenƟfying potenƟal anchor items is to test each item for DIF when constraining all
other items to have equal item parameters across groups (e.g., Cohen, Kim, & Wollack, 1996).
This approach has been shown to display increased type 1 error rates under condiƟons of un-
balanced DIF, that is when the aggregated DIF over all items favors one group over another
(Kopf et al., 2015a; W.-C. Wang, Shih, & Sun, 2012).

There are approaches that do not rely on the assumpƟon of unbalanced DIF. One recently de-
veloped approach was put forward by Kopf, Zeileis, and Strobl (2015b) and is based on the
work of W.-C. Wang (2004) and Shih and Wang (2009). It integrates rank-based item selecƟon
(Woods, 2009) and an iteraƟve procedure (e.g., Candell & Drasgow, 1988; W.-C. Wang et al.,
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2012) to build a set of anchor items. Different fromW.-C.Wang et al. (2012), Kopf et al. (2015b)
did not use a purificaƟon procedure, but rather iteraƟvely built up the anchor. In simulaƟon
studies the methods show a good performance compared to previous methods (Kopf et al.,
2015b; W.-C. Wang, 2004). However, its implicitly underlying assumpƟon is – as the authors
state – that the majority of items is DIF-free. This assumpƟon does not need to hold in appli-
caƟons.

1.2 A different view on DIF: The cluster-based approach

Bechger andMaris (2015) claim that in empirical analyses DIF cannot be idenƟfied for the item,
but only the relaƟve posiƟon of two items can be idenƟfied. Instead of idenƟfying DIF-free
items, they propose an approach that idenƟfies clusters of items that funcƟon similarly. As
such they do not claim that a specific item shows DIF or not; they also do not claim that they
can idenƟfy DIF-free items. In their approach no assumpƟon of unbalancedDIF ismade nor that
the largest group of items is DIF-free. In fact, their approach does not even claim that there is
a DIF-free item at all. In the following we will illustrate this approach. Note that this approach
is the basis of the research presented in this paper. We will follow up on the idea of the cluster
based approach and present ways in which this approach may be used for comparing groups
or measurement occasions.

Whilemost of the previous research aim at idenƟfyingDIF an of item, Bechger andMaris (2015)
delineate that DIF cannot be idenƟfied for a single item, but the funcƟoning of an item can only
be idenƟfied relaƟve to another item. This is inherent in the scale idenƟficaƟon issue. Lets
assume the competence of persons is scaled using a Rasch model (Rasch, 1960) and we want
to compare the mean competence level of two groups (group 1 and group 2) using a mulƟ-
group design. The likelihood of the two-group model is then given by

P(X = x|θ, β) =
n1∏
p=1

k∏
i=1

exp[xpi((θp + a)− (βi,1 + a))]
1+ exp[xpi((θp + a)− (βi,1 + a))]

+
n∏

q=n1+1

k∏
i=1

exp[xpi((θq + b)− (βi,2 + b))]
1+ exp[xpi((θq + b)− (βi,2 + b))]

with X denoƟng the item response matrix, θ the latent ability, and βi,g the difficulty of item
i in group g. All together there are k items in the test that are answered by n persons with
group-wise sample sizes of n1 in group one and n − n1 in group two. a and b denote addiƟve
constants in group 1 and group 2, respecƟvely.

In mulƟple-group Rasch-models, the model is idenƟfied up to an addiƟve constant. This con-
stant (here a and b) does not need to be the same across groups. As such two idenƟficaƟon
restricƟons are needed and by adopƟng a restricƟon, the relaƟve posiƟon of the scales can be
shiŌed without changing the likelihood of the model. Hence, only the difference in item dif-
ficulƟes between items (relaƟve item difficulƟes) are idenƟfied within a group. Due to these
idenƟficaƟon issue, differences in item difficulƟes between groups cannot meaningfully be in-
terpreted. However, the difference in relaƟve item difficulƟes between the groups is idenƟfied
and can be interpreted. Bechger and Maris (2015) construct a matrix of these differences in
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relaƟve item differences across groups which they term ΔR-matrix. This matrix is given by

R(g)
ij = βi,g − βj,g (1)

ΔR = R(1) − R(2), (2)

with i and j indicaƟng items and g indicaƟng the group. An example of the ΔR-matrix with
arƟficial data of seven items is shown in Figure 1. The entries in the first column of Figure 1
depict the differences in relaƟve item difficulƟes (DRID) across groups relaƟve to item 1. The
DRID for item 2 as compared to item 1 in this example is ΔR12 = R(1)

12 − R(2)
12 = (βi,1 − βj,1) −

(βi,2 − βj,2) = −.08. Thus, the difference in difficulƟes (DRID) between item 1 and 2 is 0.08
logits larger in group 2 as compared to in group 1.

Figure 1: The ΔR-matrix showing the differences in relaƟve difficulƟes (DRID) for seven example
items.

In the next step clusters of invariant items need to be idenƟfied in such a way that items within
a cluster are invariant in their item difficulƟes relaƟve to the other items in the cluster. In the
example of simulated data in Figure 1, three clusters of invariant items can be determined:
cluster 1 consisƟng of items 1 and 2, cluster 2 consisƟng of items 3 and 4, and cluster 3 con-
sisƟng of items 5, 6, and 7. Within the clusters there is hardly any DRID and the difference in
item difficulƟes is rather homogeneous across the items in a cluster. Having idenƟfied clusters,
Bechger and Maris (2015) construct a significance test to test sub-matrices of the ΔR-matrix
belonging to one cluster for invariance. While for these simulated data the clusters can easily
be idenƟfied, this is usually not the case in empirical data. An example of a ΔR-matrix from
an empirical example using 27 items is shown in Figure 2 (The example is described in more
detail later). In this example clusters may not easily be visually idenƟfied. For applying the
cluster-based approach, a way to idenƟfy the clusters need to be developed. Having idenƟfied
clusters, researcher need to choose one cluster for linking purposes.
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Figure 2: The ΔR-matrix for an empirical study.

1.3 Research QuesƟons

Bechger and Maris (2015) have laid the groundwork for a promising approach to the detecƟon
of invariant item clusters. The authorsmade clear that DIF-free items cannot be idenƟfied from
the data, only sets of invariant items can. While the approach is very promising, it cannot be
readily applied by substanƟve researchers, yet. Specifically there is no clear criterion for the
idenƟficaƟon of clusters, but the idenƟficaƟon of clusters is sƟll based on visual inspecƟon of
the ΔR-matrix. Further, when mulƟple clusters are idenƟfied, it is not clear what criteria can
be used by the researcher to choose one of the clusters as anchor items for linking purposes.

We approach these two open quesƟons by (a) proposing two procedures for the idenƟficaƟon
of clusters of invariant items and (b) offering selecƟon criteria that can guide the researcher in
the process of selecƟng a cluster. AddiƟonally, we illustrate the procedures on NEPS reading
competency data, comparing grade 9 students and adults. Finally, we discuss our results and
outline further ideas.

2 Procedures for cluster idenƟficaƟon and selecƟon

In the following we will not use the whole ΔR-matrix, but make use of the fact that the ΔR-
matrix is skew-symmetric and of rank 1. Thus, all informaƟon is contained in a single row or
column of thematrix. We arbitrarily select the first column of thematrix and further work with
one dimensional data without loss of informaƟon. Figure 3 shows the DRID, that is the entries
of the ΔR-matrix, comparing the difference in difficulƟes of all item to item 1 across the two

NEPS Working Paper No. 68, 2017 Page 6



Pohl, Stets, & Carstensen

groups. Consequently the DRID of item 1 is zero in this Figure.

Figure 3: DRID values that are taken from the first column of the ΔR-matrix in Figure 1.

2.1 Cluster IdenƟficaƟon

Items form invariant clusters of items, when their difference in relaƟve difficulƟes between the
groups are close together. Because under condiƟons of real data items are never absolutely
DIF-free, the problem of how to idenƟfy these clusters arises. We propose two methods to
do this: a) a opƟmal k-means clustering procedure for unidimensional data and b) a range
threshold procedure based on sorted data.

2.1.1 OpƟmal k-means clustering

The ΔR-matrix is a distance matrix. While this already allows the applicaƟon of a wealth of
clustering algorithms, we selected a variant of the k-means algorithms that works on a single
row/column of the matrix: opƟmal k-means clustering by dynamic programming (H. Wang &
Song, 2011). The advantage lies in its opƟmality in one dimension, where it is guaranteed to
find a global opƟmum, which is not the case for mulƟdimensional k-means clustering. In its
current implementaƟon, the algorithm minimizes the squared sum of errors of items to the
cluster center and selects the number of clusters based on BIC.

2.1.2 Range thresholds

Since the data are sortable, a straighƞorward idea is to define range threshold criteria for the
length of a cluster. Such length can be set by the researcher depending, for example, on criteria
for maximum tolerated DIF within a set of anchor items. Range thresholds may, for example,
be based on DIF-criteria of the educaƟonal tesƟng service (Zwick, 2012) or those in NEPS (Pohl
& Carstensen, 2012). We propose a method to idenƟfy clusters of items that adhere to a given
threshold for cluster length. This approach is graphically depicted in Figure 4. First, in order
to make sure that items, which show invariance relaƟve to many other items in a cluster, are
grouped together, the item with the highest density of DRID values is picked as a starƟng point
(see Figure 4 a) ). The density is determined by a Gaussian kernel esƟmate of density. The item
with the highest density is assigned to the first cluster. Subsequently, the item closest to the
leŌ or right end of the cluster is selected and it is checked whether its inclusion in the cluster
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would exceed the threshold length of the cluster (see Figure 4 b) ). If it does not, the item is
added to the cluster and the items closest to the so found new cluster are checked. Figure 4 b)
shows an excerpt of the DRID values in Figure 4 a). AŌer the first item is chosen, eight further
items are checked for inclusion. The arrows show the items that are closest to the right and
leŌ of the cluster, respecƟvely. The item pointed at with the dark color is the closest one and
checked for inclusion. This procedure is repeated unƟl no further item can be added to the first
cluster without breaking the thresholds. In the example in 4 b) this is the case aŌer eight items
have been included. If no item can be added to the cluster without exceeding the threshold,
a new cluster is built. The starƟng point for the next cluster is selected by checking for the
area of the highest density of DRID-values while excluding any items that have already been
added to a cluster (see Figure 4 c)). Items are added to the next cluster in the same manner
as described above. The procedure conƟnues unƟl all items are added to a cluster. Figure 4 d)
shows the clusters idenƟfied for the example. There are four clusters, which are depicted by
different symbols. It should be noted, that due to starƟng a new cluster based on the density,
this form of clustering usually results in a large first cluster. This may be desirable as we aim at
maximizing the homogeneity of the clusters.

2.2 Cluster SelecƟon

AŌer clusters of invariant items have been idenƟfied, the researcher needs to select one for
linking purposes. One way of choosing a cluster is by expert judgement based on the item
content. However, this is not always possible. And even if it is possible, addiƟonal criteria may
aid the selecƟon of a cluster. We propose to incorporated further informaƟon in the choice of
a cluster. We propose to use the following quaniƟƟes as addiƟonal source of informaƟon for
judging the clusters:

1. The size of the cluster in terms of the number of items that it contains is an important
criterion because the stability of the link depends on the number of items in it. Given
that the link items are truly DIF-free, sampling error in item parameter esƟmates will
have less impact when using many anchor items.

2. Cluster homogeneity refers to the amount of DRID within a cluster. As usually the items
within a cluster do not funcƟon perfectly the same, there is sƟll some DRID leŌ. A re-
searcher might require the items that are used for linking to be as homogeneous as pos-
sible. This could be quanƟfied by the within-cluster sum-of-squares.

hc =

√√√√√
∑
i∈c

(DRIDi − c̄)2

nc
(3)

with

c̄ =

∑
i∈c

DRIDi

nc
(4)
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Figure 4: IllustraƟon of the approach for idenƟficaƟon of clusters using range thresholds.

where DRIDi denotes the differences in relaƟve item difficulty for item i and nc denotes
the number of items in cluster c. This measure is akin to the linking error (Monseur &
Berezner, 2007). Lower values indicate higher homogeneity.

3. Finally, precision of item parameter esƟmaƟon (i.e., item parameter standard errors)
might provide important informaƟon when selecƟng a cluster of anchor items. The qual-
ity of the link will depend on the efficiency of the item parameter esƟmates. The effi-
ciency of the items will depend on the test targeƟng as well as the amount of missing
values. The precision of items may even differ between the groups. This is especially
the case when the group means differ and as such the test targeƟng is different in each
group. In these cases an item may have a low standard error in one group (because it is
well targeted) but not in the other one. For linking purposes we will most oŌen be inter-
ested in a low standard error (i.e. high precision) of item parameters in both groups. As
such, we propose to use the size of the standard errors of the item parameter esƟmaƟon
of the items within a cluster in both groups as a criterion. In order to invesƟgate this, the
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precision of a cluster is evaluated for each group by averaging over the standard errors of
the items within the cluster and converƟng the aggregated standard error in a precision
measure, i.e.

precgc =
√

n−1
c

∑
i∈c

ŝ−2
ig . (5)

n−1
c denotes the number of items in cluster c. s2ig denotes the standard error for item i in group

g, and c denotes a set of items belonging to a cluster. A high value indicates a high precision.

Generally, we cannot tell from the data which cluster is the correct one or if a DIF-free cluster
even exists. However, the proposed criteria might either aid the decision and provide further
informaƟon regarding the cluster chosen.

3 Empirical Study

We apply the cluster idenƟficaƟon and selecƟon procedures to empirical data from the NEPS
reading competency assessment. The NEPS is a large-scale educaƟonal study that implements
a mulƟ-cohort longitudinal design to invesƟgate competence development across the whole
life span (Blossfeld et al., 2011). Specifically, we select data for reading competency (Gehrer,
Zimmermann, Artelt, & Weinert, 2013) and link grade 9 students to an adult sample (Pohl &
Carstensen, 2013; Pohl, Haberkorn, & Carstensen, 2015).

3.1 Design

To assess reading competency in grade 9 and in the adult populaƟon, separate tests are pre-
sented to each sample with no common items across the two groups. For illustraƟon, we se-
lected the 27 dichotomous items from the 9th grade test for our invesƟgaƟon. In order to
allow for comparison of reading competence across cohorts, some form of linking is needed.
To achieve a link between the grade 9 sample and the adult sample, the NEPS employs a link
sample design to achieve overlap (Pohl et al., 2015). This design entails a separate sample of
parƟcipants that was drawn from the adult populaƟon. This link sample is presented with the
items of both, the grade 9 test and the adult test. Figure 5 illustrates the design. In this analysis
we focus on the link between the grade 9 main sample (G9; n = 13897) and the link sample
(AD; n = 501). As such we will only use the responses to the Grade 9 test items of these two
groups.

Pohl et al. (2015) invesƟgated the assumpƟons for linking in this design. They found that the
items of both tests are unidimensional within the link sample. However, they also found a con-
siderable amount of DIF between the groups when using a model that constrained the mean
item difficulƟes to be equal. Figure 6 depicts the esƟmated DIF. Although theoreƟcally all items
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Figure 5: Link sample design of the NEPS reading competency assessment. A grade 9 main
sample (G9) takes the grade 9 test (green) and an adult main sample (AD) take the
adult test (orange). An addiƟonal link sample (of adults) takes both tests and is used
for linking. Of concern in this example is the link between the grade 9 main sample
and the link sample (grey arrow).

can be used for linking both scales, this result suggests a parƟal measurement invariance ap-
proach in which only a selecƟon of items are used as anchors for linking.

Figure 6: DIF of item difficulƟes between the grade 9 main sample and the adult link sample
when equal mean difficulty is assumed between the groups.

3.2 Methods

We apply the cluster-based detecƟon approaches outlined above to the data of the grade 9
sample and the link sample. Rasch-models were esƟmated under the marginal-maximum like-
lihood framework using the R soŌware package (R Development Core Team, 2008) and the
mirt-package version 1.17.1 (Chalmers, 2012). The latent distribuƟon was assumed to be nor-
mal.
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TheopƟmal k-means algorithmwas implementedusing theR-packageCkmeans.1d.dp (H.Wang
& Song, 2011). The appropriate number of clusters was selected bymeans of BIC. For the range
threshold procedure, we selected 0.6 logits as range limit. The choice was made based on the
criteria for judging DIF in the NEPS (Pohl & Carstensen, 2013).

Cluster selecƟon criteria were calculated for each cluster idenƟfied. These include 1) the size of
the cluster, 2) the homogeneity of the cluster (Formula 3), and 3) the precision for each cluster
within groups (Formula 5).

3.3 Results

When applying the cluster-based approach to the NEPS data, the DRID-matrix in Figure 2 re-
sults. In contrast to the arƟfical example in Figure 1, in the empirical data there is no obvious
clustering of items. Thus, there is a need for a procedure to idenƟfy clusters.

3.3.1 Cluster IdenƟficaƟon

Based on BIC the opƟmal k-means clustering algorithm idenƟfies only a single cluster with all
items. When finding only a single cluster, generally, no cluster selecƟon is necessary and the
researcher might use all items for linking. However, this would result in rather invariant groups
of items. We expect this to be a result of the BIC as selecƟon criterion. The BIC may not neces-
sarily be the most appropriate criterion and we will discuss alternaƟve ones in the discussion.

The range threshold procedure detects five clusters (see Figure 7). The cluster consist of two
to eleven items. Within a cluster, the DRID is rather homogeneous. We used range thresholds
based on criteria of the NEPS. Other thresholds would have detected different clusters and it is
up to the researcher to choose appropriate ones for the concrete case.

Figure 7: RelaƟve differences in itemdifficulty for the grade 9main and adult link studies. Colors
illustrate the clusters.

3.3.2 Cluster SelecƟon

As for the k-means soluƟon only one cluster was idenƟfied, no selecƟon is necessary. Therefore
we do not further discuss selecƟon criteria for this soluƟon but for the cluster soluƟon of the
range threshold method. Using the range threshold criterion five clusters were idenƟfied. In
order to link the grade 9 main sample to the adult link sample, one cluster needs to be chosen
as anchor. One way of choosing a cluster is by experts judgement. We present some further
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staƟsƟcs that may either aid the selecƟon process and/or provide further informaƟon on a
selected cluster.

Table 1 shows the selecƟon criteria for the five clusters. The cluster with the largest number
of items is Cluster 3. This cluster may result in a rather stable link as compared to clusters
with lower number of items (given the standard errors are the same). Cluster 4 and 5 are the
most homogeneous ones, that is, showing the lowest amount of DRID. However, this comes
at the cost of a rather small number of items. Note that homogeneity corresponds to some
degree with the size of a cluster. Smaller clusters will more oŌen be preferred as they span
a lower range of DRID values. Regarding cluster precision, items in cluster 3 and 5 show a
high precision in both groups. The items in these clusters are well targeted to the majority of
persons in both groups and, thus, display low standard errors. As items of median difficulƟes
will most oŌen be the ones esƟmated with the highest precision, these are items that may be
preferred for linking. Note that the presented criteria cannot solve the problem that we do not
know whether there is a DIF-free cluster or which cluster is DIF-free. However, they may aid
the selecƟon by providing further informaƟon andmay also be used for describing the selected
cluster.

Depending on the clusters chosen for anchoring, the mean differences of the latent ability be-
tween the grade 9 main sample and the adult link sample varies between 0.85 logits (0.57 SD)
and -1.56 logits (-1.05 SD) (see table 1). This is not only a considerable amount but also a com-
plete reversal of the conclusions drawn. Using one of the first two clusters for linking would
result in a mean reading ability being esƟmated larger in adults, while when choosing cluster 3,
4, or 5 we would conclude that grade 9 students have on average a higher reading competence
than adults.

Table 1: Cluster selecƟon criteria for the five clusters idenƟfied in the NEPS reading competency
data. The column “mean differences in logits” shows the esƟmated mean differences
of the latent ability, when the cluster was selected as anchor for linking.

Cluster Size Homogeneity Precision G9 Precision adults Mean difference in logits (G9-AD)

1 (purple) 2 0.022 4.88 2.36 0.85
2 (yellow) 6 0.150 5.94 2.53 0.25
3 (red) 14 0.466 6.32 2.48 -0.38
4 (blue) 2 0.000 5.77 2.31 -0.88
5 (green) 3 0.007 7.07 2.45 -1.56

Outlook and Further Ideas

The cluster-based idenƟficaƟon of invariant items (Bechger &Maris, 2015) is a promising alter-
naƟve to tradiƟonal anchor item selecƟon procedures as it only relies onwhat can be idenƟfied
from the model and as such explicates at which stage we make assumpƟons. It furthermore
provides different soluƟons (clusters) of anchor item sets. This way it not relying on the as-
sumpƟon that the largest set of invariant items is DIF-free and also showing in which way re-
sults may be influenced by the choice of the anchor set. In order to enhance the applicability of
the approach, we proposed an extension regarding cluster idenƟficaƟon and cluster selecƟon.
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We presented two extensions for idenƟfying clusters as well as criteria that might aid in the
selecƟon of a cluster. An advantage of our procedure is that it provides criteria for the iden-
ƟficaƟon and the selecƟon of a cluster. These criteria are communicable to other researchers
and make the assumpƟons made clear. The procedures work without making the assumpƟon
of balanced DIF or that the largest cluster is DIF-free. However, this comes at the expense of an
addiƟonal cluster selecƟon step. We illustrated the procedures using empirical data from the
NEPS and show that the cluster selecƟon choice is an important one with large implicaƟons for
conclusions about group-level differences.

Applying the k-means clustering approach using BIC for cluster selecƟon seems to be a rather
conservaƟve choice concerning the number of clusters chosen. As in our empirical case and
some test cases we ran, only one cluster is idenƟfied. However, there are many other possibil-
iƟes for the selecƟon of k and the cost funcƟon. In further research these other opƟons (e.g.
k-medoids or silhoueƩe methods) may be invesƟgated in the light of the task at hand.

In the future, we would like to invesƟgate the procedures more thoroughly using a simulaƟon
study. Also, we will invesƟgate whether it is possible to integrate certain selecƟon criteria (e.g.
the cluster size) into the k-means clustering procedure (Nielsen & Nock, 2014). This would
allow to unify the cluster idenƟficaƟon and selecƟon step to a certain extend andmay opƟmize
clusters.

A selecƟon of a cluster may not always be feasible as no cluster may have enough support to be
chosen as anchor. If a cluster cannot be selected as anchor based on substanƟve arguments,
a research may link the data using each of the clusters (as was done here). This helps in deter-
mining the uncertainty that arises with the choice of a cluster. Wewould also like to resolve the
model selecƟon problem that is posed by the different clusters bymeans of Bayesianmodel av-
eraging. This would allow to use all clusters and at the same Ɵme to quanƟfy of the uncertainty
in cluster selecƟon in the posterior distribuƟon.
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