
Götz Rohwer  

COMPETENCE DISTRIBUTIONS,  
LATENT REGRESSION MODELS 
AND PLAUSIBLE VALUES

NEPS Working Paper No. 55
Bamberg, April 2015

NEPS WORKING PAPERS



 
 

Working Papers of the German National Educational Panel Study (NEPS) 

at the Leibniz Institute for Educational Trajectories (LIfBi) at the University of Bamberg 

 

The NEPS Working Papers publish articles, expertises, and findings related to the German 

National Educational Panel Study (NEPS).  

The NEPS Working Papers are edited by a board of researchers representing the wide range 

of disciplines covered by NEPS. The series started in 2011. 

 

Papers appear in this series as work in progress and may also appear elsewhere. They often 

represent preliminary studies and are circulated to encourage discussion. Citation of such a 

paper should account for its provisional character.  

 

Any opinions expressed in this series are those of the author(s) and not those of the NEPS 

Consortium.  

 

 

The NEPS Working Papers are available at  

https://www.neps-data.de/projektübersicht/publikationen/nepsworkingpapers 

 

 

 

Editorial Board: 
Jutta Allmendinger, WZB Berlin 

Cordula Artelt, University of Bamberg 

Jürgen Baumert, MPIB Berlin 

Hans-Peter Blossfeld, EUI Florence  

Wilfried Bos, University of Dortmund 

Claus H. Carstensen, University of Bamberg 

Henriette Engelhardt-Wölfler, University of Bamberg 

Frank Kalter, University of Mannheim 

Corinna Kleinert, IAB Nürnberg 

Eckhard Klieme, DIPF Frankfurt 

Cornelia Kristen, University of Bamberg 

Wolfgang Ludwig-Mayerhofer, University of Siegen 

Thomas Martens, DIPF Frankfurt 

Manfred Prenzel, TU Munich 

Susanne Rässler, University of Bamberg 

Marc Rittberger, DIPF Frankfurt 

Hans-Günther Roßbach, LIfBi  

Hildegard Schaeper, DZHW Hannover 

Thorsten Schneider, University of Leipzig 

Heike Solga, WZB Berlin 

Petra Stanat, IQB Berlin 

Volker Stocké, University of Kassel 

Olaf Struck, University of Bamberg 

Ulrich Trautwein, University of Tübingen 

Jutta von Maurice, LIfBi 

Sabine Weinert, University of Bamberg 

 

 

 

Contact: German National Educational Panel Study (NEPS) – Leibniz Institute for Educational 

Trajectories – Wilhelmsplatz 3 – 96047 Bamberg − Germany − contact@lifbi.de 



Competence Distributions, Latent Regression

Models and Plausible Values

Götz Rohwer, Ruhr-Universität Bochum

April 2015

Email address of the author:

goetz.rohwer@rub.de

Bibliographic data:

Rohwer, G. (2015). Competence Distributions, Latent Regression Models and Plausible Val-

ues. (NEPS Working Paper No. 55). Bamberg: Leibniz Institute for Educational Trajectories,
National Educational Panel Study.

NEPS Working Paper No. 55, 2015



Rohwer

Competence Distributions, Latent Regression Models and Plausible Values

Abstract

The paper discusses constructions of competence distributions presupposing a Rasch model.
Constructions, as well as estimation procedures, differ depending on whether competence dis-
tributions refer to either observed sum scores or some latent competencies. It is shown that
using posterior distributions for estimating distributions of latent competencies often leads to
misleading results. The same problems occur when ‘plausible values’ are used to approximate
posterior distributions. Some of these problems can be avoided with latent regression models
which focus on mean values of latent competencies. These models, however, entail that the
notion of competence becomes dependent on conditioning variables and therefore are in conflict
with the idea of measuring competencies.
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The primary goal of large-scale assessments of competencies is to describe and compare distri-
butions of competencies in and between groups of persons. This paper discusses some methods
which have been proposed for the construction of competence distributions. I refer to a compe-
tence test, Tm, consisting ofm binary items. The items are represented by variables, X1, . . . ,Xm,
having values 1 (if there is a correct answer) or 0 (otherwise). Values of these variables for the
members of a population (or sample) G are given by vectors xi := (xi1, . . . , xim); i identifies
members of G. I also assume a variable G whose values can be used to demarcate subsets of G.
As a theoretical framework, I use a Rasch model

Pr(X1=x1, . . . ,Xm=xm | U= u; δ) =

m
∏

j=1

exp(xj (u− δj))

1 + exp(u− δj)
(1)

where δ = (δ1, . . . , δm) is a vector of item parameters, and u denotes values of a latent variable,
U , often called ‘latent competencies’.

In Section 1, I discuss how this model can be used to think of measures of competencies, as
empirically assessed by the test Tm. In Section 2, I consider the estimation of distributions of
sum scores (number of correctly answered items); and in Section 3, I consider two approaches
to the estimation of distributions of latent competencies which are defined by a reference to the
variable U in model (1). In Section 4, I discuss regression models which consider mean values
of latent competencies as being dependent on covariates (‘latent regression’). In Section 5, I
discuss the proposal to use so-called ‘plausible values’ as a technical means for the estimation
of latent competence distributions and regression models. I show that this method leads into
several difficulties, both practical and theoretical. The paper ends with a brief conclusion.

1. Conceptualizations of Competencies

A straightforward approach to the conceptualization of competencies relates to their actual
realization in the situation in which the test is performed (e.g. Holland, 1990). For each person
i, they show up in the response vector xi which can be summarized by the score sum

s∗i :=
m
∑

j=1

xij (2)

These are observed values resulting from a single application of the test Tm. They can be
considered as values of a variable, S∗, having a frequency distribution: P(S∗ = s), that is, the
observed proportion of members of G having the realized sum score s∗i = s.

A different approach is based on interpreting model (1) as postulating a probabilistic relationship
between a latent variable, U , and observable test results, X1, . . . ,Xm. The model then entails, for
each value u of U , a distribution of possible test results (resulting from hypothetical repetitions
of the test ‘under the same conditions’). In this view, the variables X1, . . . ,Xm are random
variables; and consequently, one can consider also the observable sum scores as values of a
random variable

S :=

m
∑

j=1

Xj (3)

Following this probabilistic interpretation, model (1) entails that, conditional on values of U , S
has a generalized binomial distribution (I use Pr() for probabilities and P() for frequencies):

Pr(S=s |U= u) =
∑

x∈Ds

m
∏

j=1

Pr(Xj=xj |U= u) (4)
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for s = 0, . . . ,m; Ds is the set of all response patterns x = (x1, . . . , xm) where Σjxj = s. The
conditional mean value of S is simply

E(S |U= u) =
m
∑

j=1

Pr(Xj=1 |U= u) =
m
∑

j=1

exp(u− δj)

1 + exp(u− δj)
(5)

This equation motivates the following definition:

The latent competence ui of a person i is defined by E(S |U = ui), that is, the
person’s mean sum score in a sequence of hypothetical repetitions of the test Tm.

The definition entails that only observed test results are to be used for an assessment of compe-
tencies. Conditional on values of U , no further variables should play a role in the measurement
of competencies; in particular,

Pr(S=s |U= u,G=g) = Pr(S=s |U= u) (6)

However, even when accepting this definition of latent competencies, there is no immediate
answer to the question of how to think of a distribution of competencies in the population G. I
consider two possibilities.

(A) One can be interested in the distribution of U in the population G, that is, P(U = u).
(Equivalently, one can refer to the conditional expectations, E(S |U = u), which are related
to values of U by a nonlinear scale transformation.) Since U is a latent variable, there is no
immediate way to estimate its distribution. In Section 3, I consider two approaches.

(B) One starts from the idea that a person’s competence is given by a distribution of possible
sum scores, conditional on the person’s latent competence ui. The distribution of competencies
in a population G is then to be described as an unconditional distribution of S which is derived
from postulating a fixed distribution of latent competencies in G, say P(U= u). Note that this
is a frequency distribution (with a finite support): P(U = u) is the proportion of members of
G whose latent competence equals u. A reference to this distribution allows one to define the
unconditional distribution

Pr(S=s) =
∑

u
Pr(S=s |U= u) P(U= u) (7)

which describes the distribution of competencies of the members of G.

2. Distributions of Possible Sum Scores

I begin with the second approach (B). In this case, one intends to estimate the distribution of
the random variable S, as defined by (3), in the population G. The definition of this distribution
presupposes a fixed distribution of U and relates to the test results (sum scores) of randomly
drawn members of G. However, since the distribution of U is fixed, and repetitions are postu-
lated to be independent (not influenced by previous outcomes), persons with the same latent
competence are exchangeable. Therefore, given a sufficiently large sample, it suffices to know
the result of a single test for each person; in other words, one can use P(S∗ = s) to estimate
Pr(S = s).

For the illustration of this and subsequent arguments, I use model (1) to create artificial data.
I assume m = 15 items having parameters δj := 0.5 j − 4. The population, G, consists of two
parts: G0 has n0 = 7000 and G1 has n1 = 3000 members. In order to distinguish the two
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Fig. 2.1 Solid: the distribution f(u) as defined in (8); dashed:
distributions f0(u) and f1(u).
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Fig. 2.2 Dashed: distributions f0(u) and f1(u); solid: histograms of the
artificially generated values; mean values are -0.98 and 1.03, respectively.

subpopulations I use a variable, G, having values 0 and 1, respectively. Distributions of U are
given by f0(u) = φ(u + 1) for G0 and by f1(u) = φ(u − 1) for G1 where φ denotes a standard
normal density function. The distribution of U in G is

f(u) = 0.7 f0(u) + 0.3 f1(u) = 0.7φ(u + 1) + 0.3φ(u − 1) (8)

For each person i ∈ Gg (g = 0, 1), the distribution fg(u) is used to randomly generate a value ui
(see Figures 2.1 and 2.2). In G, the mean value of the ui values is -0.378, the standard deviation
is 1.354. Finally, values of the variables Xj are created as follows. For each person i and each
item j, one first draws a random number, rij , uniformly distributed in the interval [0, 1]; then

xij :=

{

1 if rij ≤
exp(ui−δj)

1+exp(ui−δj)

0 otherwise
(9)

Using these data, Figure 2.3 illustrates that a single test result for each member of G suffices to
estimate the distribution of S.
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Fig. 2.3 Distributions of S, based on a single outcome (solid) or on the
outcomes of 10 repetitions (dashed) for the persons in G. Ordinate: percent.

The same argument applies when estimating distributions of S in subpopulations. The distri-
bution of S in the subpopulation Gg is defined by

Pr(S=s |G=g) =
∑

u
Pr(S=s |G=g, U= u) P(U= u |G=g) (10)

Because of (6),

Pr(S=s |G=g) =
∑

u
Pr(S=s |U= u) P(U= u |G=g) (11)

and these conditional probabilities can be estimated by the frequencies P(S∗=s |G=g).

3. Distributions of Latent Competencies

In this section, I consider two approaches to the estimation of distributions of U in the population
G and in subpopulations Gg.

3.1 A Simple Estimation Approach

I begin with a simple method which is based on equation (5). For each person i in the population,
a corresponding equation is

E(S |U= ui) =
m
∑

j=1

exp(ui − δj)

1 + exp(ui − δj)
(12)

Using s∗i as an estimate of person i’s expectation of S, suggests to consider ûi, as defined by

m
∑

j=1

exp(ûi − δ̂j)

1 + exp(ûi − δ̂j)
= s∗i (13)

as an estimate of ui.
1 The values δ̂j are estimates of the item parameters of model (1). Given

such values, one can calculate a latent competence estimate corresponding to sum scores s =
1, . . . ,m− 1.
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Fig. 3.1 Solid: observed and smoothed frequency distribution of the ûi

values (derived from observed score sums s = 1, . . . ,m − 1). Dashed: the
presupposed distribution f(u) as defined in (8). The ordinate relates to f(u).
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Fig. 3.2 Smoothed frequency distributions of the ûi values (solid) and the
presupposed distributions f0(u) and f1(u) (dashed) in subpopulations G0 and
G1. The ordinate relates to f(u).

Figure 3.1 illustrates this method with the data introduced in Section 2.2 The vertical lines
show the frequencies of the ûi values (for score sums s = 1, . . . ,m− 1). The solid line shows a
smoothed version of this distribution, and the dashed line shows the distribution f(u) as defined
in (8). As illustrated in Figure 3.2, the same approach can be used to estimate distributions of
U in subpopulations. This also allows one to estimate mean values of latent competencies in
subpopulations:

∑

i∈Gg
ûi/ng. In the example, one finds the value −1.02 for the subpopulation

G0 and the value 1.05 for the subpopulation G1.

1The same equation results from maximizing the likelihood of a version of the Rasch model (1) that considers
the postulated latent competencies of individual persons, ui, as model parameters.
2I use the following estimates of item parameters which result from a conditional maximum likelihood estimation
of model (1): δ̂j (j = 1, . . . , 15) = -3.4993, -2.9872, -2.5064, -2.0194, -1.5140, -0.9557, -0.4925, -0.0152, 0.4861,
0.9804, 1.5171, 1.9640, 2.4773, 2.9629, 3.6020.
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Although acceptable at first sight, estimation results are biased. As it is seen, in particular
in Figure 3.1, the method overestimates the density in the tails of the distribution of U . This
is a direct consequence of using the observed sum scores, s∗i , as estimates of the conditional
expectations E(S |U = ui). The problem is obvious: with a single realization of a random
variable one cannot reliably estimate its expectation. More observations are not available,
however, because one cannot identify subsets of persons having the same latent competence
(which, by assumption, are considered as exchangeable).

3.2 Using Posterior Distributions

I now consider the idea to estimate a parametric version of the distribution of U in the population
G by a posterior distribution. This approach starts from a presupposed prior distribution, given
by a density function f∗(u), which is then used to define a joint distribution of U andX1, . . . ,Xm:

g(x1, . . . , xm, u) := Pr(X1=x1, . . . ,Xm=xm | U= u) f∗(u) (14)

This allows one to derive a distribution of U which is conditional on the observed test results:

g(u | x1, . . . , xm) =
g(x1, . . . , xm, u)

∫

u
g(x1, . . . , xm, u) du

(15)

Using model (1), one gets

g(u | x1, . . . , xm) =

∏

j

exp(xj (u− δj))

1 + exp(u− δj)
f∗(u)

∫

u

∏

j

exp(xj (u− δj))

1 + exp(u− δj)
f∗(u) du

(16)

Factoring out
∏

j exp(−xj δj) in both the numerator and the denominator, this simplifies into

g(u | x1, . . . , xm) = (17)

∏

j

exp(xj u)

1 + exp(u− δj)
f∗(u)

∫

u

∏

j

exp(xj u)

1 + exp(u− δj)
f∗(u) du

=

exp(s u)
∏

j 1 + exp(u− δj)
f∗(u)

∫

u

exp(s u)
∏

j 1 + exp(u− δj)
f∗(u) du

where s = Σjxj . This shows that the posterior distribution of latent competencies only depends
on the sum score, and it suffices to use the notation

g(u |S = s) (18)

where s = 0, . . . ,m denotes a sum score. Finally one can derive an estimate of the distribution
of U in G by

g(u) =

m
∑

s=0

g(u |S = s) P(S∗ = s) (19)

where P(S∗ = s) is the proportion of persons in G having the sum score s∗i = s.

Prior distributions can be choosen arbitrarily. Most often a normal distribution is used. Since its
mean value can be arbitrarily fixed (or is implied by a constraint on the item parameters), only
its variance could be specified as an estimable parameter. To illustrate with the data introduced
in Section 2, I use the marginal likelihood function

Lm(δ) =
n
∏

i=1

∫

u

m
∏

j=1

exp(xij (u− δj))

1 + exp(u− δj)
f∗(u) du (20)
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-5 -4 -3 -2 -1 0 1 2 3 4 5
0

Fig. 3.3 Solid: the distribution g(u) as defined in (19), based on the prior
distribution φ(u;µ = −0.37, σ = 1.36); dashed: the distribution f(u) as
defined in (8).
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0

0.5

f0(u) f1(u)

g(u |G=0) g(u |G=1)

Fig. 3.4 Solid: the distributions g(u|G = g) as defined in (21), based on the
prior distribution φ(u;µ = −0.37, σ = 1.36); dashed: the distributions fg(u).

where f∗(u) = φ(u;µ, σ), and µ = −0.37 and σ = 1.36 are fixed values. The resulting posterior
distribution is shown in Figure 3.3. Obviously, it is not a good estimate of the distribution f(u)
as defined in (8).

Results are even more misleading when one uses this method for comparing distributions in
subpopulations. Since the prior distribution, f∗(u), does not depend on the variable representing
the subpopulations, the posterior distribution in a subpopulation g is given by

g(u |G = g) =
m
∑

s=0

g(u |S = s) P(S∗ = s |G = g) (21)

where now P(S∗ = s |G = g) is the proportion of persons in subpopulation Gg having the sum
score s∗i = s.

Figure 3.4 compares these distributions with the distributions fg(u) which are used for gener-
ating the data. In particular, one gets misleading estimates of mean values: −0.72 and 0.42,
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respectively. The difference is 1.14, but should approximately be 2.

4. Latent Regression Models

If one is interested only in the mean values of competence distributions in subpopulations,
one can circumvent an explicit estimation of posterior distributions. Instead, one can start
from a model which, in addition to item parameters, contains parameters representing mean
competencies. This approach is called ‘latent regression’.

To illustrate, I first continue with the example introduced in Section 2. Since there are only two
subpopulations, G0 and G1, one can use the regression equation

u = g β + ǫ (22)

where g ∈ {0, 1} specifies the subpopulation and ǫ denotes values of a random variable with a
standard normal distribution. Inserting this equation into the Rasch model (1), one gets the
marginal likelihood function

Lm(δ, β) =

n
∏

i=1

∫

ǫ

m
∏

j=1

exp(xij (ǫ+ gi β − δj))

1 + exp(ǫ+ gi β − δj)
φ(ǫ) dǫ (23)

where gi denotes the subpopulation to which person i belongs. This likelihood exactly cor-
responds with the model that was used for the generation of data in Section 2. So it is not
surprising that, in this example, one gets a good estimate of the difference of mean values:
β̂ = 2.00. (The mean of the estimated item parameters is 0.978, so that the estimated mean
values in the subpopulations are −0.98 and 1.02, respectively.)

A latent regression model can provide useful estimates of mean values even if the distributional
assumptions are to some extent wrong. To illustrate, I use a modification of the example which
assumes for the subpopulation G0 a log-normal distribution of latent competencies:

f ′
0(u) :=

1

u+ 3
φ(log(u+ 3)− 0.193) (24)

beginning at u = −3; the mean value is again -1. For G1 I use again the distribution f1(u), so
that the distribution for the whole population becomes

f ′(u) = 0.7 f ′
0(u) + 0.3 f1(u) (25)

Figure 4.1 shows these distributions. Although the likelihood (23) no longer conforms to the
data generating process, one still finds an acceptable estimate β̂ = 1.956 (the mean value of
the estimated item parameters is 1.00). In contrast, as illustrated in Figure 4.2, the method
discussed in Section 3.2 would suggest a very misleading picture of the distribution of latent
competencies in one of the subpopulations.

The preliminary conclusion is that latent regression models can provide acceptable estimates
of mean values of latent competencies in subpopulations. Several questions remain, however.
Some of these which concern the theoretical status of latent regression models will be discussed
in the next section. In the remainder of the present section I consider an ambiguity in the
understanding of ‘mean competencies’ of the persons in a subpopulation demarcated by values
of the regressor variables, say G = g. One has to distinguish between two versions:

a) One can start from the mean latent competence in the subpopulation g defined by

ūg :=
∑

u
uP(U= u |G=g) (26)
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Fig. 4.1 Solid: the distribution f ′(u) as defined in (25); dashed: the
components f ′

0
(u) and f1(u).
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Fig. 4.2 Dashed: the distributions f ′

0
(u) and f1(u) which are used for

generating the data; solid: estimated posterior distributions.

and then think of a corresponding expectation of the number of correctly answered items:

m
∑

s=0

sPr(S=s |U= ūg) =
m
∑

s=0

s
∑

x∈Ds

m
∏

j=1

Pr(Xj=xj |U= ūg) (27)

b) One can refer to the mean of the number of correctly answered items in the subpopulation
g, that is,

m
∑

s=0

sPr(S=s |G = g) = E(S |G = g) (28)

which can immediately be estimated by the mean of the observed sum scores in Gg.

In general, both versions of a ‘mean competence’ differ. For example, using the data introduced
in Section 2, the mean sum score in subpopulation G = 0 is 5.44. On the other hand, the mean
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latent competence in this subpopulation is ū0 = −0.965, so that the mean sum score defined in
(27) takes the value 5.67. So one needs a decision about the notion of ‘mean competence’ to be
used. Obviously, the mean value defined in (28) not only has a simpler interpretation but also
can immediately be estimated without a latent regression model.

Probability metric vs. logit scale

Definition (28) corresponds to thinking of competencies in terms of probabilities (of correct
answers). Instead of U , one refers to a variable S̄ := h(U), where h(u) := E(S |U = u). Let
f(u) denote the distribution of U . Then

E(S |G = g) =
∑

s

s

∫

u

Pr(S = s |G = g, U = u) f(u |G = g) du (29)

Since E(S |G = g, U = u) = E(S |U = u), as implied by (6), it follows:

E(S |G = g) =

∫

u

E(S |U = u) f(u |G = g) du = (30)

∫

u

h(u) f(u |G = g) du = E(h(U) |G = g) = E(S̄ |G = g)

This shows that E(S |G = g) can be interpreted as the mean value of S̄ in the subpopulation g.
Like U , also S̄ is a ‘latent variable’ (defined by a statistical model). However, while U is defined
on a logit scale, values of S̄ can directly be interpreted as probabilities: s̄i = h(ui) is person i’s
probability of correctly solving the items of Tm, as postulated by the presupposed Rasch model;
and E(S |G = g) corresponds to the mean of these probabilities in the subpopulation g.

5. Plausible Values

I now consider ‘plausible values’ which have been proposed to support the estimation of distri-
butions of latent competencies (Mislevy, 1991; Mislevy et al., 1992; von Davier et al., 2009). The
euphemistic term ‘plausible value’ denotes values randomly drawn from the posterior distribu-
tions which are intended to represent latent competencies. In order to discuss possible uses of
such values I first refer to the construction of posterior distributions described in Section 3.2. For
each person i, there is a posterior distribution g(u |S = s∗i ), and one can think that ‘plausible

values’ p
(k)
i (k = 1, . . . ,K) are random draws from these distributions.

Such ‘plausible values’ can be used to calculate K versions of a distribution of latent compe-
tencies. Their mean approximates the distribution g(u) as defined in (19). This shows that
‘plausible values’ are simply a technical means that allows one to approximate posterior distri-
butions (and quantities derived from such distributions) without the need of explicitly estimating
the parametric densities. Of course, when posterior distributions are misleading (as was argued
in Section 3.2), this remains true when they are approximated with ‘plausible values’.3

‘Plausible values’ can also be used as a technical means for latent regressions. This modeling
approach presupposes, for each subpopulation (as demarcated by the regressor variables), a
particular distribution of latent competencies, say f∗(u |G = g). In the examples discussed
in Section 4, f∗(u |G = g) = φ(u − g β). Thinking of these as prior distributions, one can

3As an example, one can think of the proposal to use ‘plausible values’ for the estimation of ‘proficiency levels’
which are derived from quantiles of posterior distributions of latent competencies; see, e.g., OECD (2009: 100).
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derive corresponding posterior distributions. In parallel to the derivation of (17), one can derive
distributions

g(u | S = s,G = g) =

exp(s u)
∏

j 1 + exp(u− δj)
f∗(u |G = g)

∫

u

exp(s u)
∏

j 1 + exp(u− δj)
f∗(u |G = g) du

(31)

These distributions can be used to generate ‘plausible values’, and these values can then be
used as values of the depending variable of a standard regression model. In this way, instead
of estimating a latent regression model, one can estimate K versions of a standard regression
model. If it is a linear model, the mean values of the estimated model parameters will be
approximately identical to the corresponding parameters of the latent regression model (where
the degree of approximation depends on K).4 So it is seen that also in this context ‘plausible
values’ are only a technical means which allows one to calculate a latent regression model without
the need to maximize the corresponding likelihood function. There are, however, both practical
and conceptual difficulties.

A difficulty of practical application

A first difficulty concerns the practical application. The model of the posterior distribution that
is used for the generation of ‘plausible values’ must correspond to the latent regression model
that one aims to estimate with these values. For example, it would obviously be wrong to use,
instead of (23), a standard regression model with ‘plausible values’ drawn from a single posterior
distribution for the whole population. In fact, one has to incorporate the same regression model
that one intends to estimate into the model to be used for the generation of ‘plausible values’.
So one needs a new set of ‘plausible values’ for each latent regression model. In other words,
‘plausible values’ cannot be provided with any degree of generality.

A conceptual difficulty concerning the regression model

Another difficulty derives from a remarkable feature of latent regression models: The definition
of the dependent variable, which is intended to represent measured competencies, depends on the
specification of the model. So there is an important difference compared to ordinary regression
models which presuppose that the dependent variable has a definition that is independent of
the regressor variables and the model specification. This independence is essential for any
explanatory claim of the model. In contrast, when using a latent regression model, already the
notion of a person’s competence (as defined by a measurement procedure) depends, not only
on the outcome of a competence test, but also on the person’s values of the regressor variables
(so-called ‘conditioning variables’ in this context).5

A seemingly similar problem occurs when missing values of a dependent variables are substituted
by imputed values generated by a model-dependent procedure. However, given that there is
a model-independent definition of the dependent variable, the imputation procedure can be
considered (and possibly justified) as a method for estimating the missing values. Mislevy and
other authors have proposed that also ‘plausible values’ can be considered as ‘imputed values’

4If the regression model is linear, one could also use EAP (‘expected a posteriori’) values

EAPi :=

∫
u

u g(u |S=s
∗

i , G=gi) du (32)

instead of ‘plausible values’, for the dependent variable.
5For an illustration, see Rohwer (2014).
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substituting latent competencies which can never be observed (Mislevy, 1991; Mislevy et al.,
1992). The analogy is misleading, however, because one no longer estimates values of a defined
variable but, instead, defines the values of a variable by an imputation procedure.

In Section 1 I have proposed the following definition: the latent competence ui of a person i is
defined by E(S |U= ui), that is, the expectation of the sum score in hypothetical repetitions of
a test Tm. This definition entails that ui is to be considered as a (hypothetically) fixed quantity.
In contrast, a latent regression model relates to values of a random variable U ′

i defined by

u′i :=
L
∑

l=1

zil βl + ǫ (33)

where zi = (zi1, . . . , ziL) are the person’s values of the regressor variables Z = (Z1, . . . , ZL),
β = (β1, . . . , βL) is a corresponding parameter vector, and ǫ is the realization of a residual
variable. This residual variable, and its distribution fǫ, is postulated by the model.

The interpretation proposed by Mislevy et al. can be understood in the following way: One starts
from using (33) for a latent regression model that provides estimates of β and item parameters.
The resulting distribution of U ′

i (which depends on Z, β and the presupposed distribution fǫ)
is then used as a prior distribution for deriving a posterior distribution g′i(u |Z = zi;β); and
this distribution is finally used to generate the ‘plausible values’ for person i. The mean of a
sufficiently large number of such ‘plausible values’ corresponds to the EAP value

∫

u

u g′i(u |Z=zi;β) du (34)

There is no reason, however, why this value should be considered as an estimate of ui; and
consequently, there is no reason why random draws from g′i(u |Z = zi;β) should be consid-
ered as sensible imputations. Quite the contrary, the procedure makes the definition of latent
competencies to depend on conditioning variables and the specification of a regression model.

Measurement versus imputation

It has been suggested that ‘plausible values’ can also be understood as incorporating ‘mea-
surement errors’ (e.g. Wu, 2005). However, ‘plausible values’ are random draws from posterior
distributions of latent competencies which are defined by a statistical model. Using ‘plausible
values’ instead of directly referring to the underlying distributions only creates an approximation
error; there is no relationship with a measurement error.

In order to introduce a notion of measurement error, one first has to define the quantity that
one intends to measure. I have proposed to refer to E(S |U= ui), that is, a person’s expectation
of the number of correctly answered items (in a series of hypothetical repetitions of a test). The
measurement error associated with an observed sum score s∗i is then given by

s∗i − E(S |U= ui) (35)

This allows one to interpret Pr(S=s |U= ui) as a distribution of measurement errors (around its
mean). Entailed by the definition of competencies, this distribution only depends on outcomes
of the competence test, not on any further covariates Z; consequently

Pr(S=s |U= ui, Z=zi) = Pr(S=s |U= ui) (36)

This approach to the definition of measurement errors can be carried over to latent competencies.
As ui corresponds to E(S |U = ui), so does ûi correspond to E(S |U = ûi). So one can think of
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ûi−ui as corresponding to the measurement error (35). Again, also ûi depends only on the test
results, not on any further covariates.

This is different, however, when one refers to the distributions g′i(u |Z = zi;β). These distri-
butions depend not only on test results, but also on conditioning variables. For an ordinary
imputation method it is, of course, essential that imputed values depend on all covariates to be
used for the imputation. However, the idea is that the imputed value can be considered (and
justified) as a (good) estimate of the missing value. And it is obvious, then, that the imputed
value is to be interpreted, not as a measured value, but as an estimated value.

This understanding of an imputation procedure is not appropriate for the assessment of compe-
tencies. Since the distributions g′i(u |Z=zi;β) depend on covariates, they cannot be interpreted
as representing measurement errors. And this entails that ‘plausible values’ which are drawn
from these distributions cannot be interpreted as more or less accurate measurements.

6. Conclusion

In this paper I have discussed approaches to the definition and estimation of distributions of
competencies (based on outcomes of a single competence test). The focus is on approaches which
presuppose a Rasch model. I have proposed to interpret its random variables as representing
hypothetical repetitions of the actually used test. This allows one to think of a correspondence
between values of a variable, U , representing latent competencies, and expectations of observable
sum scores, formally: E(S |U = u). There are then two possibilities to refer to individual
competencies and their distribution in a population G: (A) Individual competencies are referred
to by values of U , and the interest concerns the distribution of U in G. (B) The competencies
of a person is referred to by a distribution of possible sum scores, conditional on the person’s
value of U . The distribution of competencies in a population G is then to be described as an
unconditional distribution of S which is derived from postulating a fixed distribution of latent
competencies in G.

Notwithstanding their intimate relationship, possibilities to estimate the distributions are re-
markably different. While distributions of S can easily be estimated from observed sum scores,
there is no straightforward approach to the estimation of distributions of latent competencies
(or expectations of S). In particular, methods which require parametric assumptions will often
suggest misleading results.

To some extent, these problems can be circumvented when the interest only concerns mean
values of latent competence distributions. This is the motivating idea of latent regression models.
There are, however, two drawbacks. First, this approach is based on a notion of ‘mean latent
competence’ which is difficult to understand. Moreover, there is an alternative notion which
simply refers to the mean of observable sum scores, and when using this notion one no longer
needs a latent regression model.

Second, a latent regression model makes the definition of its dependent variable to depend on
the actually used regressor variables, the model specification, and an arbitrarily presupposed
distribution of residuals. This method therefore conflates the definition of latent competencies
with their explanation (prediction). For example, the definition of math competencies then
depends on a person’s sex (Rohwer, 2014).

Finally, I have considered the concept of ‘plausible values’. These are random draws from
posterior distributions and can be used as a technical means that allows one to avoid an explicit
reference to parametric representations of such distributions. However, when such distributions
misrepresent latent competencies the same will be true when one uses ‘plausible values’ generated
from such distributions. On the other hand, for the estimation of latent regression models, one
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would need ‘plausible values’ which are derived from models incorporating the actually intended
model specification. Consequently, ‘plausible values’ which possibly could ease the estimation
of a latent regression model cannot be provided with any degree of generality.
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