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Rohwer

Functional Models and Causal Interpretations

Abstract

Invited by the National Educational Panel Study (NEPS), during the Winter 2011/12, the author
gave a series of lectures about ‘Statistical methods in sociological research of education’. This
text comprises an elaboration of three of these lectures discussing the understanding of statistical
models and their relationships with substantive research questions. A basic idea is to distinguish
between two goals of statistical methods: Description of statistical facts concerning frequency
distributions defined for a sample or population, and finding rules for relationships between
variables which can be used for predictions and explanations. Correspondingly, there are two
kinds of statistical generalization: Descriptive generalizations (from sample to population), and
modal generalizations (from data to rules).

The paper is then mainly concerned with functional models understood as tools for modal gen-
eralizations. Such models can be used both for predictions and for explanations. In social
research, they are mainly used for explanations. Important questions then concern relation-
ships between explanatory variables which can be of different kinds. In particular, one has to
distinguish between interactions and functional relationships. Further questions concern causal
interpretations. It is argued that causal relationships cannot be defined in terms of functional
models (variables and their functional relations), but require an interpretation in terms of the
substantive application. How to understand such interpretations also depends on whether the
model is intended to serve explanations or to assess effects of treatments. This distinction is
particularly important for social research dealing with processes involving activities of human
agents. The paper finally discusses, and contrasts, two quite different understandings of notions
of ‘potential outcomes’.

Keywords

descriptive generalization, modal generalization, functional model, causal interpretation
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Invited by the National Educational Panel Study (NEPS), during the Winter 2011/12, I gave
a series of lectures about ‘Statistical methods in sociological research of education’. This text
comprises an elaboration of three of these lectures discussing the understanding of statistical
models and their relationships with substantive research questions.

As a starting point, I distinguish two goals of statistical methods: (a) Description of statistical
facts concerning frequency distributions defined for a sample or population. (b) Finding rules
for relationships between variables which can be used for predictions and explanations. Corre-
spondingly, there are two kinds of statistical generalization: Descriptive generalizations (from
sample to population), and modal generalizations (from data to rules). This will be discussed in
the first chapter where I introduce a distinction between descriptive models (= tools for descrip-
tive generalizations) and analytical models (= tools for modal generalizations). This chapter
also proposes a general definition of functional models.

The second chapter starts from the observation that analytical models most often require the
inclusion of several explanatory variables. It is then important to explicitly consider relationships
between these variables. I distinguish between interaction and functional relationships, and
discuss both kinds at some length.

The third chapter is concerned with using functional models for causal considerations. I argue
that causal relationships cannot be defined in terms of such models (variables and their func-
tional relations), but require an interpretation in terms of the substantive application. They
nevertheless can provide useful formal notions of (causally interpretable) effects. I then intro-
duce a distinction between explanatory and treatment models which is particularly important
for social research dealing with processes involving activities of human agents. Finally, I discuss
the ‘potential outcomes approach’ and distinguish between a descriptive and a rule-based version
of this approach. I show that only a rule-based version is compatible with functional models.

1. Descriptive and analytical models

I distinguish two goals of statistical methods: Description of statistical distributions in a specified
set of units (a sample or population), and finding rules, most often about relationships between
variables, which can be used for predictions and explanations. There correspondingly are two
ways of using data:

• descriptive generalization: from descriptive statements about a sample to descriptive state-
ments about a corresponding population, and

• modal generalization: from statistical data to the formulation of more general relationships
between variables.

This distinction will be discussed in the first section. I then go on to distinguish two kinds
of statistical models. In the second section I very briefly consider descriptive models which
aim to describe distributions of statistical variables defined for a sample or population. In the
third section I consider analytical models serving to formulate theoretical hypotheses about
relationships between variables.

1.1 Two kinds of generalization

1. Descriptive statistical statements. I use the following definition: Descriptive statistical state-
ments are statements about the frequency distribution of properties (or quantities derived
thereof) in a specified set of units. As a formal framework, I use statistical variables (Roh-
wer 2010). The symbolic notation is X : Ω −→ X . X is the name of the variable, Ω is the
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reference set, a finite set of actually observed or assumed cases, and X is the property space
(domain). If the reference set consists of not actually observed cases, it is nevertheless required,
for descriptive statements, that one can reasonably assume that the cases do exist, or have ex-
isted in the past. For example, ‘all children who attended Kindergarten in Germany in 2010’,
but not: ‘all children who (possibly) attend Kindergarten in Germany in 2020’.

2. Defining descriptive generalization. Statistical variables provide a useful framework for the
definition of descriptive generalization. Starting point is a statistical variable, X : Ω −→ X ,
representing the observations. Ω, the set of observed cases, is then considered as subset of another
set, say Ω∗, for which one can assume an analogously defined statistical variable: X∗ : Ω∗ −→ X ,
having the same property space as X.

This framework allows one to define: A descriptive generalization consists in using the observed
values of X for making descriptive statements about the distribution of X∗ in Ω∗. It is note-
worthy that the desired generalization has the same linguistic form as the statistical statements
derived from the observations; there only is a change in the reference set.

I will not discuss here problems of statistical inference. It is obvious, however, that the justi-
fication of a descriptive generalization must be based on the data generating process that has
generated the observations. Note that I use the following distinction:

• The term ‘data generating process’ is used to refer to a process that generates data, that is,
information about already existing facts.

• In contrast, when referring to processes that generate new facts (outcomes), I use the term
‘fact-generating process’.

As an example think of a learning frame in which students can acquire capabilities of a specified
kind, and assume that individual learning results can be captured by values of a variable, say
Y . One can firstly think of a fact-generating process in which each student eventually acquires
a particular capability. Afterwards, a data-generating process can take place, that is, a process
in which a researcher represents students’ capabilities by particular values of Y .

3. Limitations of descriptive generalizations. Descriptive generalization intends to enlarge the
knowledge about statistical facts, meaning here statistical distributions as they are actually real-
ized in specified populations. This very interest requires a narrow understanding of ‘population’.

Limitations become obvious when the justification of descriptive generalization is based on
probability sampling. This requires that Ω can be viewed as a probability sample from Ω∗.
Consequently, Ω∗ can only consist of units having a positive selection probability when and

where the sample is drawn.

Particular difficulties arise when the interest concerns historical processes. The basic question
then is, How to define a population of processes? From a methodological point of view, such
populations are best defined as cohorts. However, being interested in descriptive generalizations,
this requires to adopt a historical perspective that is confined to mostly completed processes.

A special problem occurs in the NEPS which is based on different samples from different pop-
ulations: Would it be possible to combine the data in order to get a picture of overarching
educational processes? This will not be possible in the form of just one descriptive generaliza-
tion (since no combined sampling design is available). It might be possible, however, to use the
separate samples for modal generalizations (predictive rules) which, taken together, would allow
making comprehensive statements about educational processes.

4. Modal generalizations with rules. I now consider a different kind of generalization where the
goal is, not a descriptive statement about a set of units, but a predictive rule. I use the term
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‘rule’ in a general sense for statements having the form

If . . ., then . . .

Different kinds of rules can be distinguished w.r.t. the modalities used in formulating the then-
part; for example: If . . ., then . . . is possible, or probable, or necessary, or normatively required.

Empirical research is primarily interested in predictive rules. Example: Let ω denote an indi-
vidual who has finished school in Germany: If at least one of ω’s parents has finished school
with an Abitur, then it is highly probable that also ω has an Abitur. Note that this is a generic

rule, meaning that its object is specified only by values of variables.

An important distinction can be made between static and dynamic predictive rules.

• A static predictive rule formulates a relationship between properties of a unit. The general
form is: If ω has property x, then ω (probably) has property y. This kind of predictive rule
is exemplified by the above example.

• A dynamic predictive rule relates to a fact-generating process that generates an outcome that
is to be predicted.

Example: If ω (a generically specified individual) regularly participates in the instructions,
she will (probably) be successful in the final exam.

5. Formulating predictive rules with variables. In the following, I only consider predictive rules
which include a probabilistic qualification of the prediction. When formulating such rules with
variables, a first question concerns how to understand the probabilistic qualification. There are
two forms:

a) Qualitative: If X=x, then Y=y is probable (in some qualified sense).

b) Quantitative: If X = x, then Pr(Y = y) = . . . [a specific, actually given or assumed,
numerical value].

Empirical research with statistical methods regularly uses quantitative formulations. (Since
there is a formal equivalence of frequency and probability functions, researchers often ignore the
conceptual distinction and present their observed frequencies in terms of probabilities.)

The presupposition of quantifiable probabilities allows one to use mathematical functions for
formulating the relationship between the if - and the then-part of the rule. As a general form
one can use

x −→ Pr[Y |X=x]

to be read as a function that assigns to each value x in the domain of X a conditional probability
distribution of Y . If Y is a discrete variable, one can also use specific functions having the form

x −→ Pr(Y=y |X=x)

for each value y in the domain of Y . Another often used special form is

x −→ E(Y |X=x)

which formulates the relationship with conditional expectations of Y .

Starting from such general formulations, one can think of more specific parametric forms. How-
ever, whatever the finally chosen functional form, these forms must be distinguished from nu-
merically specified functions which actually allow one to calculate values of the function.

6. Predictive rules vs. descriptive statements. Predictive rules must be distinguished from
descriptive statistical statements.
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• While descriptive statistical statements concern a reference set of particular units, a predictive
rule concerns a generic unit which is only specified by values of variables.

• Correspondingly, there is a conceptual difference between frequencies, P(Y=y |X=x), which
presuppose a finite reference set, and probabilities, Pr(Y=y |X=x), which concern a generic
unit. I therefore use different symbols: P for frequencies, and Pr for probabilities.

A random generator can serve to illustrate the distinction. I use ‘throwing a die’ as an example.
The random generator can be defined by a rule, e.g., ‘If the die is thrown, there are six possible
outcomes, each can occur with the same probability (1/6).’ This rule is to be distinguished from
a descriptive statement about frequencies of outcomes in an actually realized set of throws.

Assume the die is thrown 100 times. Results can be represented by a statistical variable Z :
Ω −→ Z := {1, . . . , 6}. P[Z], the distribution of Z, must be distinguished (numerically and
conceptually) from the probability distribution which is used in the formulation of the rule
describing the random generator.

Since predictive rules are different from descriptive statements (and different from analytical
truths), they cannot be true or false. They can only be pragmatically justified, that is, with
arguments showing that, and how, a rule can help people in their activities.

7. Statistical and modal variables. The conceptual distinction between descriptive statements
and predictive rules suggests to make a corresponding distinction between the kinds of variables
involved. As already explained, descriptive statistical statements are derived from statistical
variables which are known, or assumed, to represent realized properties of existing units. This
is also true for conditional frequencies: P(Y = y |X= x) is derived from a statistical variable,
(X,Y ), which is defined for a particular reference set.

When considering instead conditional probabilities, Pr(Y = y |X= x), one must recognize that
there are two different conceptual frameworks:

• One can assume that the conditional probabilities are derived from a random variable (X,Y ).
This understanding presupposes the existence of joint and marginal probability distributions
of the two variables.

• The situation is different when conditional probabilities serve to formulate probabilistic pre-
dictive rules. In this framework, X is used to formulate a hypothetical assumption, and so
it is neither a random variable (having a probability distribution) nor a statistical variable
(having a statistical distribution). Consequently, also Y has no unconditional distribution,
but can only be viewed as a random variable for specified values of X.

In order to remind of the second context, I speak of modal variables and use a special notation:
Ẍ instead of X, and Ẏ instead of Y . The symbolic notation for a probabilistic predictive rule
then becomes x −→ Pr[Ẏ | Ẍ=x].

8. Applications of predictive rules. Why do we need predictive rules? Part of the answer is
obvious: they are required for making observations relevant for predicting possible (future)
outcomes. However, can predictive rules also be used for explanations?

An influential tradition has sought to use probabilistic rules for explanations of individual out-
comes (often called ‘inductive-statistical explanations’). This proposal was followed by a long-
standing critical discussion. One of the main points of criticism is easily understandable: That
A makes B to some degree probable does not show why B occurred.

The discussion mainly concerns differences between ‘explanation’ and ‘prediction’ and can there-
fore be ignored if one is only interested in predictions. On the other hand, being interested in
explanations, one should begin with rethinking the questions that should be answered by an
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explanation and, in particular, distinguish ‘why’ and ‘how’ questions (see, e.g., Cross (1991) and
Faye (1999)).

I will not take up this discussion which primarily concerns the explanation of particular outcomes
in individual cases. Instead, I briefly consider statistical explanations which are concerned
with statistically defined explananda (= statistical distributions or quantities derived from such
distributions).

9. Statistical explanations. Statistical explanations, as I use this term here, are concerned with
the explanation of statistical distributions. Let P[Y ], the distribution of a statistical variable
Y : Ω −→ Y, denote the explanandum. In my understanding, a statistical explanation uses two
premisses:

• a statistical distribution, P[X], X being defined for the same reference set Ω, and

• a probabilistic rule: x −→ Pr[Ẏ |Ẍ=x], where Ẍ and Ẏ correspond, respectively,
to X and Y .

The formal part of the explanation then consists in using

Pr(Ẏ=y) :=
∑

x
Pr(Ẏ=y | Ẍ=x) P(X=x) (1)

to derive a probability distribution Pr[Ẏ ]. (This formulation presupposes that all variables are
discrete.)

The predictive claim is that Pr[Ẏ ] is approximately equal to P[Y ]. This claim is trivially valid if
the predictive rule is derived from the joint distribution of X and Y . The idea that the predictive
rule is a generalization must therefore be taken seriously, and should be explicitly considered.

However, one also must reflect explanatory claims which are entailed neither by the formal
framework nor by any particular degree of predictive success. I propose that the following
considerations are important.

a) Whether values of explanatory variables can be understood as conditions for processes
generating values of the explanandum variable.

b) Whether there are relationships between explanatory variables, and one can distinguish
mediating and exogenous explanatory variables.

c) Whether there are potentially important explanatory variables not explicitly considered,
and what might follow from their omission.

d) Whether, and to which degree, the rule used in the explanation depends on the particular
distribution of the explanatory variables (‘distribution-dependent causation’).

e) Whether, and to which degree, the rule used in the explanation is historically stable.

1.2 Descriptive models

1. Descriptive models based on statistical Variables. Descriptive models, as understood in this
text, are tools for describing distributions of statistical variables. Starting point is a statistical
variable, X : Ω −→ X , often consisting of several components. A descriptive model aims to
describe the distribution of X, denoted by P[X], or aspects of this distribution, by using a
simpler mathematical form.

As an example, one can think of describing the distribution of students’ ‘ability scores’ by a
normal distribution (Jackson et al. 2007).
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2. Regression models with statistical variables. If X consists of two or more components, one
is often interested in descriptions of conditional distributions. This is done with regression
functions and regression models. The starting point is given by a two-dimensional statistical
variable, say (X,Y ) : Ω −→ X × Y. A general regression function is a function

x −→ P[Y |X=x]

which assigns to each value x ∈ X the conditional frequency distribution of Y , as given by the
statistical variable (data). In order to create a descriptive regression model, one uses a simpler
mathematical representation of the conditional distribution, say g(x; θ) ≈ P[Y |X=x], where θ
is a parameter vector. A general regression model is then given by the function x −→ g(x; θ).

Special regression models are used to represent aspects of P[Y |X= x]. Of widespread use is
regression with conditional mean values: m(x; θ) ≈ M(Y |X=x). As an example, one can think
of a linear model,

M(Y |X=x) ≈ α+ xβ

This model approximates the conditional mean value of Y by a linear function of the values of
X that are used as conditions.

3. Descriptive models and descriptive generalizations. Descriptive models are primarily tools
for comprehending aspects of complex data sets. As suggested by a famous statistician, R.A.
Fisher (1922: 311), this is a primary task of statistical methods:

Briefly, and in its most concrete form, the object of statistical methods is the re-
duction of data. A quantity of data, which usually by its mere bulk is incapable
of entering the mind, is to be replaced by relatively few quantities which shall ad-
equately represent the whole, or which, in other words, shall contain as much as
possible, ideally the whole, of the relevant information contained in the original
data.

Descriptive models are also useful tools for descriptive generalizations. Since these models relate
to statistical variables, there is no conceptual difference whether the reference set is a sample or
a population. Starting from a model intended to describe a population allows one to think in
terms of estimating its parameters with the information from a sample.

Notice that the term ‘estimation’ has a clear meaning in this context: It means that one aims
to find values of model parameters which are defined by their hypothetical calculation for the
complete population. This entails that already their definition depends not only on the specified
model, but also on a particular method to calculate its parameters.

1.3 Analytical models

1. Relationships between variables. Analytical models, as understood in this text, are tools for
thinking about relationships between variables. The basic formal tool are functions (mathe-
matically understood) which connect variables. So one can speak of ‘functional relationships’
between variables, and the models are also called ‘functional models’ (Rohwer 2010).

Two kinds of such functional relationships must be distinguished. Consider two variables, X
with domain X and Y with domain Y.

• A deterministic functional relationship consists of a function

x −→ y = f(x)

which assigns to each value x ∈ X exactly one value f(x) ∈ Y.
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• A probabilistic functional relationship consists of a function

x −→ Pr[Y |X=x]

which assigns to each value x ∈ X a conditional probability distribution.

Notice that Pr[Y |X= x] is itself a function. If Y is a discrete variable, this function can be
written as

y −→ Pr(Y=y |X=x) (2)

to be interpreted as the probability of Y=y given that X=x.

Since (2) is formally identical with a probabilistic predictive rule as introduced in 1.1.6, func-
tional models can also be understood as tools for formulating probabilistic predictive rules.

2. A general notion of functional models. A general definition of functional models can be given
as follows:

a) The structure of the model is given by a directed acyclic graph.

b) To each node of the graph corresponds a variable. Variables with indegree zero are called
exogenous variables and marked by two dots. All other variables are called endogenous
variables and marked by a single dot. (The notation corresponds to the convention intro-
duced in 1.1.8.)

c) For each endogenous variable, there is a deterministic or probabilistic function showing how
the variable (its values or probability distribution) depends on values of the immediately
preceding variables.

d) Without further assumptions, exogenous variables do not have an associated distribution.

This is a formal framework. The arrows between variables have no specified meaning. In many
applications they can be understood as indicating some kind of dependence relation.

3. Illustration with a simple example. To illustrate the notion of functional model, I begin with
a simple example which concerns the educational outcome of a generic child.

Model 1.3.1

Ẏ

Ż

Ẍ --

??�����*

����*

For simplicity, the variables are assumed to be binary and defined as follows:

Ẏ child’s educational outcome (1 successful, 0 otherwise)

Ẍ parents’ educational level (1 high, 0 low)

Ż school type (1 or 2)

The model contains two probabilistic functions:

x −→ Pr[Ż | Ẍ=x]

(x, z) −→ Pr[Ẏ | Ẍ=x, Ż=z]
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Since Ż and Ẏ are binary variables, it suffices to consider the functions

x −→ Pr(Ż=1 | Ẍ=x)

(x, z) −→ Pr(Ẏ=1 | Ẍ=x, Ż=z)

The first function is intended to show how the probability of attending a specified school type
depends on the parents’ educational level. The second function is intended to show how the
probability of educational success depends both on the parents’ educational level and on the
school type.

4. Assuming distributions for exogenous variables? Exogenous variables of a functional model
do not have an associated distribution. However, there sometimes are reasons for assuming
distributions for exogenous variables.

a) Using the model for a statistical explanation (as defined in 1.1.9) w.r.t. a particular ref-
erence set. Distributions of the model’s exogenous variables are then identified with the
distributions of the corresponding statistical variables.

b) Using the model for predicting the outcome for an individual that is (only) known to belong to
a particular reference set. One then employs a reduced model that is derived from the original
model by integrating over the distributions of the unobserved exogenous variables. Assume,
for example, that one wants to use the model of the previous paragraph for predicting a
child’s educational success. Not knowing the educational level of the parents, one cannot
use the model. However, substituting Ẍ by a variable Ẋ with a probability distribution
Pr[Ẋ |Z̈=z], one can derive a reduced model

Pr(Ẏ=1 | Z̈=z) =
∑

x
Pr(Ẏ=1 | Z̈=z, Ẋ=x) Pr(Ẋ=x|Z̈=z)

which only requires knowledge of the child’s school type.

c) Using the model for predicting the value of an exogenous variable based on knowing values
of endogenous variables. In order to apply Bayesian inference, one must begin with a prior
distribution for the exogenous variables.

5. Defining effects of explanatory variables. Assume that Ẏ depends on an exogenous variable
Ẍ. To think of an effect of Ẍ means to compare

Pr[Ẏ |Ẍ=x′] and Pr[Ẏ |Ẍ=x′′]

for (at least) two values, x′ and x′′, of Ẍ. This comparison concerns conditional distributions
and cannot, in general, be summarized by a single number.

One therefore often uses a simplified definition which only compares expected values:

E(Ẏ |Ẍ=x′′)− E(Ẏ |Ẍ=x′) (3)

However, one has to take into account that Ẏ also depends on further variables. Then, in general,
effects cannot simply be attributed to a change in Ẍ, but are context-dependent . Formally,
assume that Ẏ also depends on Z̈. The effect of a change in Ẍ must then be written as

E(Ẏ |Ẍ=x′′, Z̈=z)− E(Ẏ |Ẍ=x′, Z̈=z) (4)

and, in general, depends on the covariate context specified by Z̈=z.

6. Explained variance and statistical explanation. Authors who estimate regression functions
often report some measure of ‘explained variance’. It is noteworthy that this notion cannot
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immediately be applied to functional models. Assume a simple functional model: Ẍ −→→ Ẏ .
Since there is no distribution for Ẍ, also Ẏ has no distribution, and the idea of ‘explained
variation’ cannot be applied.

It would be possible to refer to the variance of Ẏ conditional on values of Ẍ: V(Ẏ |Ẍ=x). This
could be used for quantifying the uncertainty of predictions; but this is a different idea.

However, the notion of ‘explained variance’ can sensibly be used when functional models are
considered as tools for statistical explanations. As proposed in 1.1.9, this application starts
from a statistical variable, say (X,Y ) : Ω −→ X ×Y. One then uses P[X], the distribution of X,
and a functional model Ẍ −→→ Ẏ to construct a statistical variable, say Ŷ , whose distribution
approximates P[Y ]. Two approaches to the construction of P[Ŷ ] can be distinguished:

a) Using a prediction rule for individual outcomes to define individual values of Ŷ , e.g.
Ŷ (ω) := E(Ẏ | Ẍ = X(ω)).

b) Directly deriving a distribution of Ŷ .

The first approach depends on specifying a prediction rule which can be done in several dif-
ferent ways, in particular when the outcome variable is qualitative. I therefore focus on the
second approach which does not require prediction rules for individual outcomes. Following this
approach, the construction of Ŷ ’s distribution begins with conditional values:

P(Ŷ=y |X=x) := Pr(Ẏ = y | Ẍ=x)

One then uses the known distribution of X to derive the corresponding distribution of Ŷ :

P(Ŷ=y) =
∑

x
P(Ŷ=y |X=x) P(X=x)

The construction can finally be assessed with two considerations:

• One can compare P[Ŷ ] with P[Y ] (‘goodness of distributional fit’).

• One can calculate the part of the variation of Ŷ which can be attributed to variation of X
(‘explained variance’).1

7. Numerical illustration. To illustrate the construction, I use Model 1.3.1 and assume the
following data:

X Z Y =0 Y =1

0 1 300 300

0 2 80 320

1 1 40 160

1 2 80 720

The goodness of distributional fit depends on the parametric model that is used to approximate
the functional model. Using a saturated model, the fit would be perfect. In the example:

Pr(Ẏ=1|Ẍ=x, Ż=z)=P(Y=1|X=x,Z=z) =⇒ P[Ŷ ]=P[Y ]

The fit would not be perfect if one had used, for example, a logit model without an interaction
term. And, of course, there will be no perfect fit when the statistical explanation concerns a set
of data different from those that are used to estimate the model.

1Of cause, one could use other measures of variation instead of variance.
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Finally, one can calculate the explained variance, that is, the part of the variance of Ŷ (not of
Y ) which can be attributed to variation of X. Since the joint distribution of X and Ŷ is known,
one can apply a standard variance decomposition:

V(Ŷ ) = V[M(Ŷ |X)] + M[V(Ŷ |X)]

The first part can be interpreted as explained variation:

V[M(Ŷ |X)] =
∑

x
[M(Ŷ |X=x)−M(Ŷ )]2 P(X=x)

The second part is the residual variation:

M[V(Ŷ |X)] =
∑

x
V(Ŷ |X=x) P(X=x)

In our illustration, assuming a saturated model, one finds M(Ŷ ) = M(Y ) = 0.75 and V(Ŷ ) =
V(Y ) = 0.1875, and finally:

• explained variation: V[M(Ŷ |X,Z)] = 0.0285,

• residual variation: M[V(Ŷ |X,Z)] = 0.1590,

• proportion of explained variation: 0.0285/0.1875 ≈ 15%.

2. Relationships between explanatory variables

Statistical explanations most often consider many explanatory variables. The formulation of
explanatory claims must include, then, an explication of relationships between the explanatory
variables. This chapter discusses how functional models can be used to consider such relation-
ships. The first section deals with interactions between explanatory variables and points to
implications for understanding effects. The second section considers functional relationships
between explanatory variables (which are different from interactions). In both sections, the dis-
cussion is general without presupposing a specific parametric form. The third section considers
relationships between explanatory variables in the context of linear models for expectations.

2.1 Interactions between explanatory variables

1. A general definition of interaction. The leading idea is: Ẍ and Z̈ are interactive conditions

for the distribution of Ẏ if the effect of a change in Ẍ [Z̈] depends on values of Z̈ [Ẍ ]. The
formulation shows that the presence of interaction also depends on the definition of ‘effect’. To
illustrate, I use

Model 2.1.1

Ẏ

Z̈

Ẍ --

�����*

����*

with Ẏ = indicator of a child’s educational success; Ẍ = educational level of the child’s parents (0
low, 1 high); Z̈ = type of school the child is attending (0 or 1). The corresponding probabilistic
function is

(x, z) −→ Pr[Ẏ |Ẍ=x, Z̈=z] (5)
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The right-hand side denotes the probability distribution of Ẏ in a situation where Ẍ = x and
Z̈ = x. Assuming that Ẏ is discrete, specific values of this distribution will be denoted by
Pr(Ẏ =y|Ẍ=x, Z̈=z).

A simple definition of the effect of a change from Ẍ=x′ to Ẍ=x′′ is given by

∆s(Ẏ ; Ẍ [x′, x′′], Z̈=z) := E(Ẏ |Ẍ=x′′, Z̈=z)− E(Ẏ |Ẍ=x′, Z̈=z) (6)

Using this definition, one can easily invent examples with and without interaction between the
two explanatory variables:

with interaction without interaction

x z E(Ẏ |Ẍ=x, Z̈=z) x z E(Ẏ |Ẍ=x, Z̈=z)

0 0 0.5 0 0 0.5

0 1 0.7 0 1 0.7

1 0 0.8 1 0 0.7

1 1 0.9 1 1 0.9

(7)

2. Interaction in parametric models. The above definition of interaction between explanatory
variables is independent of the parametric form of the function which relates these variables
to the distribution of an outcome variable. When using parametric models, it depends on the
parametric form whether, and how, interactions can be made visible.

Linear models for mean values require an explicit formulation of interaction terms (most often
defined by multiplying variables). In contrast, almost all nonlinear models entail interaction
effects already by virtue of their mathematical form. However, even then it depends on the
details of the parametric form which interaction effects can be made visible.

The logit model can serve as an example. For Model 2.1.1, the standard formulation would be:

Pr(Ẏ =1|Ẍ=x, Z̈=z) ≈
exp(α+ xβx + zβz)

1 + exp(α+ xβx + zβz)

This formulation implies an interaction effect when using the effect definition (6), but not when
using odds ratios:

Pr(Ẏ =1|Ẍ=x′′, Z̈=z)/Pr(Ẏ =0|Ẍ=x′′, Z̈=z)

Pr(Ẏ =1|Ẍ=x′, Z̈=z)/Pr(Ẏ =0|Ẍ=x′, Z̈=z)
≈ exp

(

(x′′ − x′)βx
)

Of course, it will often be sensible to explicitly add an interaction term:

Pr(Ẏ =1|Ẍ=x, Z̈=z) ≈
exp(α+ xβx + zβz + xzβxz)

1 + exp(α+ xβx + zβz + xzβxz)

3. Implications for understanding effects. Interaction has an important consequence: If two
explanatory variables interact, no one can be attributed a unique effect. Instead, one must
speak of context-dependent effects. This notion is symmetrical: each of the interacting variables
can be considered as providing a context for the other one.

To illustrate, consider Model 2.1.1 as exemplified on the left-hand side of (7). The effect of
parents’ educational level depends on the school type:

∆s(Ẏ ; Ẍ [0, 1], Z̈=0) = 0.8− 0.5 = 0.3

∆s(Ẏ ; Ẍ [0, 1], Z̈=1) = 0.9− 0.7 = 0.2
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Conversely, the effect of the school type depends on the parents’ educational level.

4. Assuming distributions for exogenous variables. In general, whether it is possible to define
unique effects also depends on whether the interacting variables are exogenous or endogenous
(as specified in a functional model). In Model 2.1.1, both explanatory variables are exogenous.
In order to define a unique effect of one of the variables, say Ẍ, it could be sensible to assume
a distribution for the other variable. Z̈ is then substituted by a variable Ż which is still an
exogenous variable with a distribution not depending on Ẍ. This leads to a modified model:

Model 2.1.2

Ẏ

Ż

Ẍ --

�����*

����*

This modified model would allow one to define a mean effect:

∆s(Ẏ ; Ẍ [x′, x′′], Ż) :=
∑

z

(

E(Ẏ |Ẍ=x′′, Ż=z)− E(Ẏ |Ẍ=x′, Ż=z)
)

Pr(Ż=z)

However, given that Ẍ and Ż interact, the effect still depends on the distribution of Ż. This
can easily be seen when using the data on the left-hand side of (7):

∆s(Ẏ ; Ẍ [0, 1], Ż) = (0.8− 0.5)Pr(Ż=0) + (0.9 − 0.7)Pr(Ż=1)

2.2 Functional relations between explanatory variables

1. Functional relationships and interactions. The idea of interaction concerns the probabilistic
function which relates the explanatory variables to the outcome variable. A different question
concerns functional relationships between explanatory variables. As an example, I consider a
modification of Model 2.1.1:

Model 2.2.1

Ẏ

Ż

ẌPPPPPq

�����1

PPPPPq

�����1??

This model, in addition to the functional relationship

(x, z) −→ Pr[Ẏ |Ẍ=x, Ż=z] (8)

which corresponds to (5), also assumes a relationship

x −→ Pr[Ż|Ẍ=x] (9)

that shows how the child’s school type depends on the parents’ educational level. Whether there
is interaction between Ẍ and Ż w.r.t. Ẏ is completely independent of this function relating Ẍ
and Ż. For later illustrations, I assume

Pr(Ż=1 | Ẍ=0) = 0.4 and Pr(Ż=1 | Ẍ=1) = 0.8 (10)

2. Mediator and moderator variables. Authors often distinguish between mediator and mod-
erator variables (e.g. Baron and Kenny 1986, MacKinnon 2008). In the context of functional
models, one can use the following definitions:
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Ż is a mediator variable for Ẍ [or Ẋ] w.r.t. another variable, Ẏ , if Ż lies on a directed
path leading from Ẍ [or Ẋ] to Ẏ .

Ż is a moderator variable w.r.t. a relationship between Ẍ [or Ẋ ] and Ẏ if the effect
of Ẍ [or Ẋ ] on Ẏ depends on values of Ż.

Using these definitions, Ż is a mediator variable in Model 2.2.1. If Ż interacts with Ẍ , it is also
a moderator variable. On the other hand, in Model 2.1.1, Z̈ is not a mediator variable, but it is
a moderator variable if it interacts with Ẍ.

One can think, of course, of many different constellations. In the following, I will consider mainly
four types:

Model 2.2.2a Model 2.2.2c

Ẏ

Ẍ

Ż --

66

Ü -- Ẏ

Ẍ

Ż --

66

Model 2.2.2b Model 2.2.2d

Ẏ

Ẍ

Ż --

66
�����*

����*
Ü -- Ẏ

Ẍ

Ż --

66
�����*

����*

The leading question is, How to define effects of the explanatory variables in these models?

3. Effects of exogenous variables. For models 2.2.2a and 2.2.2b one can derive a total effect of
Ẍ, that is, an effect that integrates mediating variables. Starting from

E(Ẏ |Ẍ=x) =
∑

z
E(Ẏ |Ẍ=x, Ż=z) Pr(Ż=z|Ẍ=x)

the total effect in 2.2.2b is:

∆s(Ẏ ; Ẍ [x′, x′′]) =
∑

z

(

E(Ẏ |Ẍ=x′′, Ż=z) Pr(Ż=z|Ẍ=x′′)−

E(Ẏ |Ẍ=x′, Ż=z) Pr(Ż=z|Ẍ=x′)
)

(11)

The total effect in 2.2.2a is:

∆s(Ẏ ; Ẍ [x′, x′′]) =
∑

z
E(Ẏ |Ż=z)

(

Pr(Ż=z|Ẍ=x′′)− Pr(Ż=z|Ẍ=x′)
)

To illustrate the calculation of a total effect in Model 2.2.2b, I use the data in (7) and (10).

Left-hand side of (7):

E(Ẏ |Ẍ=1) = 0.8 · 0.2 + 0.9 · 0.8 = 0.88

E(Ẏ |Ẍ=0) = 0.5 · 0.6 + 0.7 · 0.4 = 0.58

Total effect = 0.88 − 0.58 = 0.3

Right-hand side of (7):

E(Ẏ |Ẍ=1) = 0.7 · 0.2 + 0.9 · 0.8 = 0.86

E(Ẏ |Ẍ=0) = 0.5 · 0.6 + 0.7 · 0.4 = 0.58

Total effect = 0.86 − 0.58 = 0.28
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4. Effects of endogenous variables. When thinking of effects of endogenous variables, a first
difficulty concerns that such variables have distributions which depend on values of other vari-
ables. To circumvent this difficulty, I assume that one can nevertheless hypothetically fix values
of endogenous variables. Given this presupposition, one can immediately define effects of Ż in
models 2.2.2a and 2.2.2c:

∆s(Ẏ ; Ż[z′, z′′]) = E(Ẏ |Ż=z′′)− E(Ẏ |Ż=z′)

In models 2.2.2b and 2.2.2d, effects of Ż are context-dependent on values of Ẍ. For example, in
2.2.2b:

∆s(Ẏ ; Ż[z′, z′′], Ẍ=x) = E(Ẏ |Ż=z′′, Ẍ=x)− E(Ẏ |Ż=z′, Ẍ=x)

5. Direct and indirect effects. Model 2.2.2b (= 2.2.1) leads to the further question of whether
one can define, not only a total, but also a direct effect of Ẍ on the expectation of Ẏ . A positive
answer requires that it makes sense to hypothetically held constant a value of Ż, although its
distribution changes with Ẍ .

Even given this presupposition, one can only define a direct effect if Ẍ and Ż do not interact.
If there is no interaction, the effect

∆s(Ẏ ; Ẍ [x′, x′′], Ż=z)

is independent of z and can sensibly be interpreted as a direct effect of Ẍ . This is illustrated by
the data on the right-hand side of (7):

∆s(Ẏ ; Ẍ [0, 1], Ż=0) = ∆s(Ẏ ; Ẍ [0, 1], Ż=1) = 0.2

An indirect effect can then be defined as the difference between the total and the direct effect.
Starting from the total effect (11), the indirect effect can be written as

∑

z
E(Ẏ |Ẍ=x′, Ż=z)

(

Pr(Ż=z|Ẍ=x′′)− Pr(Ż=z|Ẍ=x′)
)

(12)

Using again the right-hand side of (7), the indirect effect is 0.08, and the total effect is 0.2+0.08 =
0.28.

If, however, Ẍ and Ż do interact, it is not possible to define a unique direct effect even if one
assumes that values of Ż can be fixed. This is illustrated by the data on the left-hand side of
(7):

∆s(Ẏ ; Ẍ [0, 1], Ż=0) = 0.3 and ∆s(Ẏ ; Ẍ [0, 1], Ż=1) = 0.2

Consequently, there also is no unique indirect effect.

6. Counterfactual effect decompositions. If there is an interaction between Ẍ and the mediating
variable Ż, direct effects can only be defined for each value of Ż separately. It is, of course,
possible to define versions of mean direct effects. Following this idea, some authors have proposed
a ‘natural direct effect’ (e.g. Pearl 2001, Petersen et al. 2006). In the framework of functional
models, this form of a mean direct effect can be defined as

∑

z

(

E(Ẏ |Ẍ=x′′, Ż=z)− E(Ẏ |Ẍ=x′, Ż=z)
)

Pr(Ż=z|Ẍ=x′) (13)

The idea is to use the distribution of Ż that corresponds to the initial value of Ẍ, that is x′, and
to assume (‘counterfactually’) that this distribution would not change if the value of Ẍ changes
from x′ to x′′.
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Of course, one also may use other distributions of Ż. In any case, the total effect of Ẍ can be
divided into a mean direct and a mean indirect effect. Using (13) for the mean direct effect, one
gets

E(Ẏ |Ẍ=x′′)− E(Ẏ |Ẍ=x′) = (14)
∑

z

[

E(Ẏ |Ẍ=x′′, Ż=z)− E(Ẏ |Ẍ=x′, Ż=z)
]

Pr(Ż=z|Ẍ=x′) +
∑

z
E(Ẏ |Ẍ=x′′, Ż=z)

[

Pr(Ż=z|Ẍ=x′′)− Pr(Ż=z|Ẍ=x′)
]

where the second term on the right-hand side is then interpreted as a mean indirect effect.

To illustrate the decomposition for a situation with interaction, I use the data on the left-hand
side of (7) together with (10). The mean direct effect is

(0.8 − 0.5) 0.6 + (0.9 − 0.7) 0.4 = 0.26

the mean indirect effect is

0.8 (0.2 − 0.6) + 0.9 (0.8 − 0.4) = 0.04

and the total effect is 0.26 + 0.04 = 0.3.

7. Confounders and independent context variables. There is no unique definition of ‘confounding
variables’ (see, e.g., Weinberg 1993). In the context of functional models, I use the following
definition:

A variable Ẋ [or Ẍ] is a confounder w.r.t. a functional dependence of Ẏ on Ż if there
is a directed path from Ẋ to Ẏ and (a) there is a directed path from Ẋ [or Ẍ] to Ż
(direct confounding), or (b) there is a further variable, say U̇ [or Ü ], and a directed
path leads from U̇ to Ż and from U̇ to Ẋ (indirect confounding).

For example, in Model 2.2.2b, Ẍ is a directly confounding variable w.r.t. the dependence of Ẏ
on Ż. In contrast, Ż is a mediator variable, not a confounder, w.r.t. the relationship between Ẍ
and Ẏ . Notice that the definition presupposes a functional model with directional relationships
between variables and cannot be formulated in terms of ‘correlation’.

The proposed definition distinguishes confounding variables from independent context variables.
Without an arrow from Ẍ to Ż in Model 2.2.2b, Ẍ would be an independent context variable,
not a confounder.

The distinction between these two kinds of covariates concerns possibilities to define effects.
Different difficulties show up, in particular, when the variables are not observed. Consider the
independent context variable, Ẍ, in Model 2.1.1. It is a context variable for effects of Z̈ on Ẏ :

∆s(Ẏ ; Z̈[z′, z′′], Ẍ=x) = E(Ẏ |Z̈=z′′, Ẍ=x)− E(Ẏ |Z̈=z′, Ẍ=x)

If Ẍ is not observed, one can think instead of a variable, Ẋ , having an unknown distribution.
Since this distribution does not depend on Z̈, the observed effect can be considered as a mean
effect w.r.t. the unknown distribution of Ẋ :

∆s(Ẏ ; Z̈[z′, z′′], Ẋ) =
∑

x
∆s(Ẏ ; Z̈[z′, z′′], Ẋ=x) Pr(Ẋ = x)

Moreover, if there is no interaction between Z̈ and Ẋ , one can attribute the effect uniquely to
Z̈.
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A similar consideration is not possible for unobserved confounding variables. Consider the
confounding variable Ẍ in Model 2.2.2b (= 2.2.1). If this variable is not observed, one can
instead assume a random variable Ẋ having an unknown distribution. An effect of Ż can then
be expressed as

E(Ẏ |Ż=z′′)− E(Ẏ |Ż=z′) =
∑

x

(

E(Ẏ |Ż=z′′, Ẋ=x) Pr(Ẋ=x|Ż=z′′)−

E(Ẏ |Ż=z′, Ẋ=x) Pr(Ẋ=x|Ż=z′)
)

This effect is not only due to different values of Ż, but also to different distributions of Ẋ
(associated with different values of Ż). The effect cannot, therefore, be interpreted as a mean
effect w.r.t. an unknown, but common, distribution of the confounding variable.

8. Effects of mediator variables. Interestingly, the mentioned difficulties do not arise w.r.t.
mediator variables. Consider the following

Model 2.2.3

Ż -- Ẏ

Ẍ

V̇ --

HHHHHY

�����*

����*

which is similar to Model 2.2.2b but in addition contains the mediator variable V̇ . As before, if
the confounder, Ẍ, is not observed, the observable relationship between Ẏ and Ż is difficult to
interpret. The situation is different, however, w.r.t. the mediator variable V̇ .

In order to see that, substitute Ẍ by a random variable Ẋ having an unknown distribution. The
model entails the relationships

Pr[Ẏ |Ẋ=x, V̇ =v, Ż=z] = Pr[Ẏ |Ẋ=x, V̇ =v] (15)

Pr[V̇ |Ż=z, Ẋ=x] = Pr[V̇ |Ż=z] (16)

and therefore1

Pr[Ẋ|V̇ =v, Ż=z] = Pr[Ẋ |Ż=z] (17)

Using these relationships, one finds

E(Ẏ |V̇ =v, Ż=z) =
∑

x
E(Ẏ |V̇ =v, Ż=z, Ẋ=x) Pr(Ẋ=x|V̇ =v, Ż=z) =

∑

x
E(Ẏ |V̇ =v, Ẋ=x) Pr(Ẋ=x|Ż=z)

from which one derives

E(Ẏ |V̇ =v′′, Ż=z)− E(Ẏ |V̇ =v′, Ż=z) =
∑

x

[

E(Ẏ |V̇ =v′′, Ẋ=x)− E(Ẏ |V̇ =v′, Ẋ=x)
]

Pr(Ẋ=x|Ż=z)

This shows that, conditional on values of Ż, effects of V̇ can be interpreted as mean effects w.r.t.

1Starting from

Pr[Ẋ, V̇ |Ż] = Pr[Ẋ |V̇ , Ż] Pr[V̇ |Ż] = Pr[V̇ |Ẋ, Ż] Pr[Ẋ |Ż]

and using (16), (17) immediately follows.
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an unknown distribution of the confounding variable Ẋ . Moreover, if there is no interaction
between V̇ and Ẋ , one can attribute these effects uniquely to V̇ .

9. Indirectly connected explanatory variables. So far the discussion dealt with directly confound-
ing variables. I now consider indirectly confounding variables. The following model illustrates
this case:

Model 2.2.4

Ü -- Ẏ

Ẋ

Ż --
HHHHHj

HHHHHj �����*

����*

In this model, Ẋ is a confounder w.r.t. to the dependence of Ẏ on Ż according to the second
part of the above definition. If Ẋ is observed, effects of Ż can be calculated conditional on
values of Ẋ . (Further considerations depend on whether Ẋ and Ż interact, see above.)

If Ẋ is not observed, one can begin with explicitly conditioning on values of Ü and use the
assumption entailed by the model that Ż and Ẋ are independent conditional on values of Ü :

E(Ẏ |Ż=z, Ü=u) =
∑

x
E(Ẏ |Ż=z, Ẋ=x, Ü=u) Pr(Ẋ=x|Ż=z, Ü=u) =

∑

x
E(Ẏ |Ż=z, Ẋ=x) Pr(Ẋ=x|Ü=u) (18)

This shows that, conditional on values of Ü , the observed effect of Ż can be interpreted as a
mean effect w.r.t. an unknown distribution of the confounding variable Ẋ.

Of course, also Ü is a confounding variable, and no reliable conclusions about effects of Ż on Ẏ
can be drawn if also Ü is not observed.

2.3 Linear regression models

The discussion so far was general and did not rely on any parametric assumptions. I now consider
some of the previously discussed relationships in the context of linear models for expectations.

1. Linear models for expectations. Corresponding to Model 2.1.1, a simple linear version of a
parametric model for the expectation of Ẏ can be written as

E(Ẏ |Ẍ=x, Z̈=z) = β0 + xβx + zβz (19)

The model entails that Ẍ and Z̈ do not interact. Effects of Ẍ are then given by

E(Ẏ |Ẍ=x′′)− E(Ẏ |Ẍ=x′) = (x′′ − x′)βx (20)

and do not depend on values of Z̈.

What happens if Z̈ is omitted? In order to derive a reduced model, Z̈ must be substituted
by a random variable, Ż, having an unknown distribution. If one further assumes that Ż is
independent of Ẍ, there is a simple result:

E(Ẏ |Ẍ=x) =
∑

z
(β0 + xβx + zβz) Pr(Ż=z) = β0 + xβx + E(Ż)βz

showing that effects of Ẍ are still given by (20).
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2. Linear models with interactions. In its general formulation, Model 2.1.1 does not make as-
sumptions about interactions between Ẍ and Z̈. Such assumptions belong to the form of a
parametric model. When using linear models, interaction effects must be explicitly included, in
our example:

E(Ẏ |Ẍ=x, Z̈=z) = β0 + xβx + zβz + xzβxz (21)

Effects of Ẍ now depend on values of Z̈:

E(Ẏ |Ẍ=x′′, Z̈=z)− E(Ẏ |Ẍ=x′, Z̈=z) = (x′′− x′)(βx + zβxz)

This also changes the consequences of omitting Z̈. If one substitutes Z̈ by Ż and still assumes
that Ż is independent of Ẍ, one finds

E(Ẏ |Ẍ=x) = (β0 + E(Ż)βz) + x (βx + E(Ż)βxz)

Effects of Ẍ now also depend on an unknown mean value of Ż.

3. Mediator variables and total effects. So far I have assumed that Ż is independent of Ẍ. I
now assume that it is a mediator variable for Ẍ w.r.t. Ẏ , corresponding to Model 2.2.1. Then
starting from (19) without interaction, one gets

E(Ẏ |Ẍ=x) = β0 + xβx + E(Ż|Ẍ=x)βz (22)

If one assumes a linear model for the expectation of Ż,

E(Ż|Ẍ=x) = γ0 + xγx (23)

one also gets a linear formulation for the reduced model:

E(Ẏ |Ẍ=x) = (β0 + γ0βz) + x (βx + γxβz)

Since Ż is a mediator variable, βx + γxβz can be interpreted as representing the total effect of
Ẍ on Ẏ :

E(Ẏ |Ẍ=x′′)− E(Ẏ |Ẍ=x′) = (x′′− x′)(βx + γxβz)

One gets a more involved formulation when starting from (21) which includes an interaction
effect. Again assuming (23), one gets

E(Ẏ |Ẍ=x) = (β0 + γ0βz) + x (βx + γxβz + γ0βxz) + x2γxβxz

Ẏ now depends in a nonlinear way on Ẍ , but E(Ẏ |Ẍ=x′′)−E(Ẏ |Ẍ=x′) can still be interpreted
as a total effect of Ẍ on Ẏ .

4. Direct and indirect effects. In both cases, the total effect can be decomposed into a direct
and an indirect effect. Starting from (19) without interaction, one can follow the consideration
in 2.2.5. The direct effect is given by (x′′ − x′)βx, and the indirect effect can be calculated
according to (12):

(E(Ż|Ẍ=x′′)− E(Ż|Ẍ=x′))βz = (x′′ − x′) γxβz

When starting from model (21), which includes an interaction effect, one can follow the approach
that was described in 2.2.6. Based on the decomposition (14), one finds the counterfactual direct
effect

(x′′ − x′)(βx + γ0βxz + x′γxβxz)
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and the counterfactual indirect effect

(x′′ − x′)(γxβz + x′′γxβxz)

5. Omitting a confounding variable. Consider again Model 2.2.1, but now assume that one has
omitted the variable Ẍ . This is a confounding variable w.r.t. the effect of Ż on Ẏ . As was argued
in 2.2.7, the effect of Ż in the reduced model is not easily interpretable. Linear regression models
offer no advantage. Starting from (19), the reduced model omitting Ẋ (which is the substitute
for Ẍ) becomes:

E(Ẏ |Ż=z) = β0 + zβz + E(Ẋ |Ż=z)βx

While formally similar to (22), there is no similar interpretation. In (22), one can interpret
E(Ż|Ẍ=x)βz as part of the total effect of Ẍ on Ẏ . In contrast, E(Ẋ |Ż=z) cannot be interpreted
as a substantive dependency relation. Starting from the dependency relation assumed in Model
2.2.1, which goes from Ẍ to Ż, one can derive

E(Ẋ |Ż=z) =

∑

xxPr(Ż=z|Ẋ=x)Pr(Ẋ=x)
∑

xPr(Ż=z|Ẋ=x)Pr(Ẋ=x)

So it depends essentially on the distribution of Ẋ which is determined outside of the model.

3. Causal interpretations

The functional relationships which are posited when specifying a functional model do not au-
tomatically have a causal meaning. In general, their presupposition only entails the claim that
variables used as arguments in a function can contribute to predicting conditional distributions
of the dependent variable. For example, one can use a person’s educational level to predict the
educational level of her parents; but there obviously is no corresponding causal relationship. So
the question arises in which sense one sometimes can claim that relationships in a functional
model also have a causal meaning.

This question concerns the understanding of causal relationships and must be distinguished from
the further question of how one can use statistical data for estimating quantitative (numerically
specified) forms of such relationships. In the present chapter, I am mainly concerned with
the conceptual question. The first section proposes a rudimentary understanding of the idea
that variables can be causally related. In the second section, I introduce a distinction between
explanatory and treatment models, and suggest that there correspondingly are some differences
in the understanding of causal effects. The third section takes up the often used notion of
‘potential outcomes’ and shows that there are two quite different understandings.

3.1 Causal relations between variables

1. Causally relevant variables. Consider a functional relationship x −→ Pr[Ẏ |Ẍ = x]. What is
entailed by the idea that this can be viewed as a causal relationship? I propose that there are
basically two claims:

(1) that one can refer to a fact-generating process generating values of Ẏ ,1 and

(2) that this process depends on values of Ẍ .

1See the distinction between data-generating and fact-generating processes introduced in 1.1.2.
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I then call Ẍ a variable which is causally relevant for Ẏ .

These two claims are at the core of viewing causation as a generative process (see also Cox
1992, Goldthorpe 2001, Blossfeld 2009). Of course, they also provide a starting point for further
questions: How do processes generating values of Ẏ depend on Ẍ, and which role is played by
further variables on which Ẏ possibly depends?

2. Thinking of causes as events. In order to think about how processes generating values of Ẏ
depend on Ẍ one must be more specific about the meaning of the values of Ẍ . I begin with
assuming that values of Ẍ represent events. In the most simple case, Ẍ is a binary variable,
and Ẍ=1 means that an event of a specified kind has occurred, and Ẍ=0 means that such an
event has not (yet) occurred.

One can then distinguish two kinds of relationships between Ẍ and a process generating values
of Ẏ :

a) The event initiates a process that generates a value of Ẏ . As an example, think of Ẏ as
the outcome of a student’s participating in a learning frame. The student’s beginning to
participate in the learning frame can be considered as an event that initiates a process that
eventually generates a value of Ẏ .

b) The event occurs while a process that eventually generates a value of Ẏ already takes place.
So one can think of two such processes: one during which the event did occur, and another
one in which the event did not occur. The impact of the event, if it occurs, must then be
understood as modifying an ongoing process. As an example, one can think that the student
becomes severely ill while participating in the learning frame.

Most often, already the definition of a process requires to refer to an event that initiates the
process. The causal relevance of that event is then easily stated: Its occurrence is a necessary
condition for the process to take place.

Variables representing the occurrence of events will be called event variables (Rohwer 2010,
ch. 7). These need not be binary variables which refer to just one event type. In general, if Ẋ
is an event variable, its domain will be denoted by X = {0, 1, . . . ,m}, with values having the
following meaning: If j > 0, Ẋ=j means that an event of the type j has occurred; Ẋ=0 means
that no event of the specified kinds has yet occurred. The definition shows that using event
variables at least implicitly requires a temporal view.

3. Causally relevant conditions. Causally relevant variables need not be event variables. As
another kind one can think of variables representing conditions on which a process depends. I
then speak of context variables. To illustrate, I use our standard example in which a student’s
educational success, Ẏ , depends on the school type, Ẋ , and on the parents’ educational level,
Z̈. The functional model looks as follows:

Model 3.1.1

Ẏ

Z̈

Ẋ --

66
�����*

����*

In this model, one can think of Ẋ as a variable representing the occurrence of an event:

Ẋ =

{

1 if the student starts participating in learning frame σ1

2 if the student starts participating in learning frame σ2
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In contrast, Z̈, recording the parents’ educational level, is a context variable. Its values can
sensibly be understood as characterizing the context in which the process that generates a value
of Ẋ takes place. Similarly, one can understand the causal relevance of Z̈ for processes generating
values of Ẏ . The leading idea is that parents’ activities through which they support a child’s
education depend on their own educational level.

How to think of the causal relevance of Ẋ? There are two considerations. First, thinking of the
event Ẋ = j, it can be understood as initiating a process that eventually generates a value of
Ẏ . In this view, Ẋ is causally relevant because without Ẋ’s taking a positive value a process
generating a value of Ẏ cannot take place. Second, as soon as one of the possible events did
occur, it can be viewed as having generated a specific context. If Ẋ= j, it is the context σj, a
particular learning frame, in which the process generating a value of Ẏ takes place.

This can be generally stated: As soon as an event variable has a positive value, the variable can
be considered as a context variable for a process that begins at the point in time when the event
occurred.

4. Comparative and dynamic effects. To speak of a causally relevant variable, say Ẋ , presupposes
a functional model in which the variable has a particular place and can be functionally related
to other variables representing possible effects. However, it is not the model, understood as a
system of mathematical functions, that provides the causal meaning. To give a variable a causal
meaning requires considerations which cannot be expressed in terms of mathematical functions.

The functional model is silent about the meaning of its functional relationships. But given a
causal interpretation, it can be used to formally define causal effects. One specifies a variable,
say Ẏ , representing the outcomes of interest, and considers all variables on which Ẏ functionally
depends. Assume that these are the variables Ẋ and Ż. Both can then be used to define effects.
For example, an effect of Ẋ can be defined by

∆s(Ẏ ; Ẋ [x′, x′′], Ż=z) = E(Ẏ |Ẋ=x′′, Ż=z)− E(Ẏ |Ẋ=x′, Ż=z) (24)

This definition compares the expectation of Ẏ in two situations: one in which Ẋ=x′ and another
one in which Ẋ=x′′, and further presupposes that Ż= z in both situations. In this sense, the
definition formulates a comparative effect , and can be used for all kinds of causally relevant
variables. If Ẋ is an event variable, also another effect definition becomes possible:

∆d(Ẏ ; Ẋ [j], Ż=z) = E(Ẏ |Ẋ=j, Ż=z)− E(Ẏ |Ẋ=0, Ż=z) (25)

This definition formulates a dynamic effect ; it compares a situation where the event Ẋ = j
occurred with a situation where no event (of the kinds specified by Ẋ) occurred.2

To illustrate, consider the example introduced in 3.1.3. A comparative effect compares the
educational outcomes in the two learning frames, σ1 and σ2. In contrast, a dynamic effect
compares the outcome of Ẋ = j with Ẋ = 0, and since a positive value of Ẋ is a necessary
condition for a value of Ẏ , the dynamic effect is given by E(Ẏ |Ẋ=j, Ż=z).

5. Functional and causal mechanisms. Without presupposing possible effects one cannot think of
‘causes’. In a statistical approach to causality, possible effects are conceptualized by an outcome
variable, Ẏ . In social research, being interested in processes generating values of Ẏ , it is seldom
reasonable to consider only a single causal condition, say Ẍ. In most applications one has to
take into account further causally relevant conditions. The question ‘What is the causal effect
of Ẍ on Ẏ ?’, without further qualification, is then not appropriate.

2If the occurrence of an event specified by Ẋ is a necessary condition for Ẏ ’s getting a value, I use the convention
that E(Ẏ |Ẋ=0, Ż=z) = 0; see Rohwer (2010, ch. 7).
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An alternative is to think of ‘mechanisms’.3 Here I use the term in this sense: A mechanism

is an explicitly defined framework for thinking of processes generating values of an outcome
variable. More specifically, I use the term functional mechanism to denote a functional model
that shows how an outcome variable depends on other variables; and it will be called a causal

mechanism if at least some of the functional relationships can be given a causal interpretation.

Given these definitions, a mechanism is a (formal) framework and must be distinguished from the
processes which, possibly, take place according to the rules of the mechanism. This entails that
a mechanism is not by itself a dynamic entity. While one can sensibly think that a process can
generate an outcome, this cannot be said of a mechanism. But note that only the mechanism has
an explicit representation (in terms of variables and functional relations). To think of processes
that actually generate outcomes requires a causal interpretation of the mechanism.

3.2 References to human actors

1. Primary and secondary actors. Models in social research most often concern processes which
depend on the behavior of human actors. In the following, I call these the primary actors. In
contrast, I speak of secondary actors when referring to those who construct and use models.

For example, think of the models dealing with students’ educational outcomes in different learn-
ing frames. Primary actors are the students, their parents, the teachers; in general, all actors
to which one refers when interpreting the models and reflecting about causal relationships. In
contrast, the secondary actors are those who construct, discuss, and possibly use these models
for one reason or another. Note that the distinction presupposes the reference to a model. Only
w.r.t. a model can one distinguish primary and secondary actors in the proposed sense.

2. Explanatory and treatment models. There are many reasons why one could be interested in
models. Here I want to mention just one distinction that also suggests to distinguish two kinds
of models.

One interest concerns the primary actors, the conditions and outcomes of their behavior. Models
are then constructed as tools for understanding and explaining conditions and outcomes of the
behavior of the primary actors. I then speak of explanatory models.

In contrast, secondary actors could be interested in the possibility of interventions supporting
their particular goals. Models are then constructed as tools for assessing the possible effects of
interventions (often called ‘treatments’). I then speak of intervention or treatment models.

3. Functional models of experiments. Discussions of causally interpretable models often presup-
pose an interest in effects of treatments. Grounded in a long tradition, treatment models are
preferably related to an experimental context. I briefly mention some ways in which functional
models can be used as a formal framework. A first possibility is illustrated by the following
model.

Model 3.2.1

Ẏ

Z̈

Ẍ --

�����*

����*

Values of Ẍ represent the treatments whose causal effects are of primary interest. Z̈ records

3For a discussion of many of the meanings which are given to this term in the sociological literature, see Mahoney
(2001).
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further conditions which, presumably, are causally relevant for Ẏ . Both are exogenous variables
because their values are deliberately fixed by the experimenter.

In another kind of experiment, the experimenter randomly selects some of the conditions for
the experiment but still deliberately generates values of the treatment variable. This can be
represented by the following model.

Model 3.2.2

Ë --

Ẏ

Ż

Ẍ --

�����*

����*

Ẍ is still an exogenous variable, but Ż is now an endogenous variable which depends in a
specified way on Ë, an event variable initiating the experiment.

In both situations, assuming that the experiment concerns processes depending on the behavior
of primary actors, the experimenter is a secondary actor. There also is then a potential conflict.
Being interested in predictable effects of treatments, the experimenter has reason to control and
regulate the behavior of the primary actors as far as possible.

4. Randomly assigned causal conditions. There is a further kind of experiment in which also
values of the treatment variable, Ẍ , are randomly generated. The functional model then looks
as follows:

Model 3.2.3

Ë --�����*

�����*
Ẏ

Ż

Ẋ --

�����*

����*

The set-up entails that, conditional on Ë = 1 (initiation of the experiment), Ẋ and Ż are
independent. In an often used notation, this can be written as

Ẋ⊥⊥Ż | Ë = 1

This allows one to express effects of Ẋ as follows:

∆s(Ẏ ; Ẋ [x′, x′′], Ë=1) =
∑

z
∆s(Ẏ ; Ẋ [x′, x′′], Ż=z, Ë=1)Pr(Ż=z|Ë=1) (26)

This shows that a randomized experiment allows one to compare effects of different treatments
(values of Ẋ) in a balanced way: the distribution of further possibly relevant variables, Ż, does
not depend on the values of Ẋ, the treatments, that one intends to compare. But note that this
does not entail that effects of Ẋ are independent of Ż. If Ẋ and Ż interact in the generation of
values of Ẏ , the effect defined in (26) still depends on the distribution of Ż.

Notice that a reference to the variable Ë is required in order to think of an experimental context
which includes an experimenter who at least initiates the experiment. Without the variable Ë,
Model 3.2.3 only contains random variables getting their values from processes not represented
in the model. Also note that this is an intervention model in a very specific sense: randomization
is used as a fact-generating process, that is, a process generating events (values of Ẋ).

5. Two contexts for randomization. Is randomization useful in social research? In thinking
about this question one should distinguish between two different contexts for randomization.
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First, one can think of data-generating processes. The most relevant application concerns the
selection of units (for further observation). There are good arguments that samples should be
generated randomly, that is, according to in some way fixed and known selection probabilities.

An essentially different context is experimentation. Performing an experiment requires, first
of all, a fact-generating process. In this context, randomization not only, if at all, concerns
the selection of a sample of units for the experiment; but also is a method of creating facts
(‘treatments’) whose possible effects one intends to study.

While randomization in data generation is certainly useful in social research, the value of ran-
domized experiments seems questionable. The argument is not that such experiments are seldom
possible. The relevant point is that randomization would change, in an essential way, the pro-
cesses to be studied.

The example depicted in Model 3.1.1 can show this. In this example, one can be interested in
effects of the learning frames (Ẋ). The model realistically assumes that the selection of learning
frames depends on the student’s family background (represented by Z̈). This is a fact-generating
process. Randomization would substitute this by another fact-generating process that randomly
assigns students to learning frames.

3.3 Rule-based and descriptive approaches

In the statistical literature, discussions of causal effects often use notions of ‘potential outcomes’
(e.g. Rubin 2005; Morgan and Winship 2007; Angrist and Pischke 2009; Gangl 2010). Dif-
ferent understandings are possible. In this section I distinguish, and contrast, rule-based and
descriptive understandings of potential outcomes.

1. Rule-based understanding of potential outcomes. The approach to understanding causal rela-
tionships that was sketched in Section 3.1 uses functional models as a formal framework. This
is appropriate when one is interested in causally interpretable rules. Such rules – I briefly speak
of causal rules – concern potential outcomes which can be linked to different values of causally
relevant variables. Continuing with the notation introduced in Section 3.1, such a rule has the
form

(x, z) −→ E(Ẏ |Ẋ=x, Ż=z) (27)

It is a causal rule if Ẋ and Ż can be interpreted as variables which are causally relevant for the
generation of values of Ẏ . The dependent variable, Ẏ , represents potential outcomes which can
be expected in a generic situation where Ẋ and Ż have specified values. Given the rule, one can
compare potential outcomes for different values of Ẋ and Ż, and, as defined in (24) and (25),
interpret their differences as causal effects.

2. Descriptive notion of potential outcomes. In the statistical literature, one also finds a descrip-
tive notion of potential outcomes which is not based on rules. This notion relates to a specified
set of particular units, say Ω, and presupposes three (or more) statistical variables.4 A variable,
say X : Ω −→ X , represents causally relevant factors (conditions or events). As is often done in
the literature, in order to simplify notations, I assume that X is a binary variable:

X =

{

1 if a specified causal factor is present
0 otherwise

The interest concerns outcomes in situations where X = 1 or X = 0. It is assumed that these

4See, for example, Holland (1986). Similarly, Rubin (2005: 323) refers to an array of given, partly observed
values.
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outcomes can be represented by statistical variables

Yj : Ω −→ Y (28)

(j = 0 or 1) having the following meaning: If X(ω) = j, the outcome of interest has the value
Yj(ω). One can then formally define, for each unit ω ∈ Ω, a causal effect Y1(ω) − Y0(ω). Of
course, these individual causal effects cannot be observed. One therefore aims to estimate an
average causal effect which can be defined for Ω by

M(Y1)−M(Y0) (29)

However, observations only allow estimation of conditional mean values, M(Yj |X = j). So
the question arises under which conditions one can think of these conditional mean values as
unbiased estimates of M(Yj). A sufficient condition would be that X and Yj are approximately
independent;5 formally: Yj ⊥⊥X (for j = 0, 1).

This independence condition suggests that a critical question concerns the generation of values
of X. If possible, such values should be randomly assigned to the members of Ω. This would
justify to consider Ωj := {ω∈Ω|X(ω)=j} as a simple random sample from Ω, and therefore to
assume that Yj has approximately the same distribution in Ωj and Ω.

3. Including further causally relevant variables. As described in the previous paragraph, the
descriptive approach aims to define a causal effect that can be attributed to a single variable, X.
A somewhat extended formulation is required if effects also depend on further variables. Assume
that outcomes depend not only on X, but also on values of a variable Z (possibly consisting of
several components). Instead of (29), one has to consider the effect definition

M(Y1|Z=z)−M(Y0|Z=z) (30)

As before, values of Yj can only be observed if X = j; the observable conditional mean values
are M(Yj |X=j, Z=z). They provide unbiased estimates of M(Yj |Z=z) if

Yj ⊥⊥X |Z = z (for j = 0, 1) (31)

This shows that it would suffice to perform the randomization (the random assignment of values
of X to the members of Ω) separately for each value of Z.

4. Balanced effects and kinds of models. Neither the rule-based nor the descriptive approach
require that the explicitly represented variables, X and Z, are independent. Relationships
between these variables become important, however, if one aims to define causal effects of just
one variable, say X. Whether this is possible depends first of all on whether X and Z interact
in the generation of outcomes.6 If they interact, effects cannot be attributed solely to X. It is
nevertheless possible to define average effects. Following the rule-based approach, one can use
the definition

∑

z

[

E(Ẏ |Ẋ=x′′, Ż=z)− E(Ẏ |Ẋ=x′, Ż=z)
]

Pr(Ż=z) (32)

where Pr(Ż= z) refers to an (arbitrarily) specified distribution of Ż. This is a balanced effect ,
meaning that the distribution of Ż is identical for x′ and x′′. However, if Ẋ and Ż interact, the
effect still depends on the assumed distribution of Ż.

5Note that X and Yj are statistical variables, defined for a finite reference set Ω. One can therefore think of
statistical independence only in an approximate sense.
6As was discussed in Chapter 2, this must be distinguished from dependency relations which concern the joint
distribution of X and Z (or Ẋ and Ż).
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How to proceed when following the descriptive approach depends on the given data to which
the causal statements relate. If the data result from a process which entailed a randomization
of X w.r.t. Z, the distribution of Z already is approximately independent of X, and one can
interpret (29) as a balanced average effect of X. Again, if X and Z interact, this effect also
depends on the distribution of Z in the reference set of units.

If X and Z are not independent, one can construct a balanced effect. This is analogous to the
procedure in the rule-based approach. In the descriptive approach, one starts from (30) and
(arbitrarily) specifies a distribution of Z. Formally analogous to (32), an average effect can then
be defined by

∑

z

[

M(Y1|Z=z)−M(Y0|Z=z)
]

P(Z=z) (33)

One might ask whether balanced effects are particularly useful. This depends on the kind of
model. With treatment models, one is normally interested in finding an effect that can be
attributed solely to the treatment, given that all other possibly relevant conditions are in some
sense fixed. This interest suggests to construct balanced effects.

The situation is different with explanatory models. In social research, explanatory models most
often relate to situations where at least some of the causally relevant conditions are generated
by actions of primary agents. Effects of single variables are then never balanced w.r.t. all
causally relevant conditions. It would be possible, of course, to construct balanced effects w.r.t.
observed variables; but I believe that a primary interest concerns how the real effects, which are
unbalanced, come into being.

5. Contrasting the two approaches. The rule-based and the descriptive approach to the definition
of causal effects are in several respects different.

(1) A first difference concerns the notion of potential outcomes. As mentioned in 3.3.1, the rule-
based approach conforms to the understanding that potential outcomes are outcomes which, un-
der specified conditions, possibly will come into existence. Correspondingly, potential outcomes
are defined by a rule (a linguistic if-then construction).

The descriptive approach, in contrast, presupposes that potential outcomes (= values of Y0 and
Y1) already exist before values of X, and all other causally relevant variables, are fixed. To
speak of ‘potential outcomes’ is therefore somewhat misleading. Actually, what is potentially
realized is an observation of a hypothetically presupposed fact (value of Yj).

7 So it would be
less confusing to speak of ‘potential observations’.

(2) It might be helpful to remember the distinction between fact-generating and data-generating
processes. The rule-based approach aims to formulate causal rules for fact-generating processes.
The descriptive approach, as it is theoretically formulated, is concerned with data-generating
processes which provide partial information about hypothetically presupposed facts (values of
Y0 and Y1). This approach therefore seems to allow one to think of ‘causal inference’ in parallel
to a missing observation problem.8

(3) It is important to understand that the variables Y0 and Y1 can only be defined by referring to
a set of existing units. For each particular unit, say ω ∈ Ω, one can posit values, Y0(ω) and Y1(ω),
representing the outcomes corresponding toX(ω)=0 andX(ω)=1, respectively. This is possible
because, and insofar, one can assume that all further conditions on which outcomes depend are
implicitly fixed by the reference to ω, a particular unit existing in particular circumstances.9 The

7This is seldom explicitly mentioned; but see Greenland (2004: 4).
8See, e.g., Rubin et al. (2004: 105), Winship and Morgan (1999: 664).
9Positing values of Y0 and Y1 can be done in a deterministic or in a probabilistic way. This entails different
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descriptive approach is therefore essentially static and not well suited for causal interpretations
of temporally extended processes.

The rule-based approach, in contrast, is not based on a reference to a set of already existing
units, but relates to generic units which are only defined by values of variables. It is therefore
not possible to define variables corresponding to Y0 and Y1. Instead, there is a single outcome
variable, Ẏ , having possible values which only become realized when, and after, Ẋ, and any fur-
ther variables which define the generic unit, have taken specific values. There are no restrictions
for thinking of a temporally extended process connecting Ẋ and the final outcome, Ẏ .

(4) As a consequence, the independence requirement (31) cannot be formulated in the conceptual
framework of the rule-based approach. Of course, based on the mentioned understanding of Ẏ ,
one can define variables Ẏj having distributions defined by Pr[Ẏj |Ż = z] = Pr[Ẏ |Ẋ = j, Ż = z].
An independence condition paralleling (31) is then trivially true:

Ẏj ⊥⊥ Ẋ | Ẋ=j, Ż=z (for j = 0, 1) (34)

But this condition has not the same interpretation. (31) can be interpreted as the requirement
that X, conditional on values of Z, is approximately independent of all further circumstances
which are fixed by the implicit reference to particular units. This is not entailed by (34).

(5) As mentioned, in order to satisfy the independence condition (31), there ideally should be a
randomized assignment of values of X to the members of Ω (conditional on values of Z). (34)
does not require any randomization procedure. However, the important point is that formulating
a causal rule like (27) does not entail the claim that there are no further variables on which the
outcome variable depends. Such variables are simply not taken into account. Consequently, also
definitions of causal effects which are derived from (27) do not entail anything about further
variables on which the outcome variable depends. Consider the causal effect defined in (24).
This definition compares two generic units, one with Ẋ = x′′ and the other one with Ẋ = x′.
Both units have identical values of Ż; but they can differ in all other respects.

6. Omitted causally relevant conditions. If a causal rule does not relate to an artificial random
generator, one can almost always think that the rule misses one or more causally relevant
conditions. Note that this is true even if the data used to estimate the rule result from a
randomized experiment. The point simply is that there probably are causally relevant conditions
not explicitly referred to in the rule’s formulation. It is therefore not reasonable to require that
a causal rule entails the claim that one has taken into account all causally relevant conditions.

Moreover, except when dealing with artificial random generators, already the assumption that
one can ‘theoretically’ refer to a complete set of variables which are causally relevant for an
outcome variable seems obscure. The descriptive approach to potential outcomes avoids this
assumption and instead requires the conditional independence (31). This independence is viewed
as a precondition for thinking of a causal effect ofX. However, as already mentioned, (31) cannot
be formulated in a rule-based approach. In a rule-based approach one would need to refer to
explicitly defined variables which, in addition to Z, are causally relevant for Y . If one could
refer to a list of such variables, say (U1, U2, . . .), one could use the formulation

X ⊥⊥ (U1, U2, . . .) |Z = z (35)

However, the formulation is not useful because one cannot define, not even clearly think of, such
a list of variables.

understandings of individual causal effects, but the essential features of the descriptive approach are independent
of this distinction.
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Of course, it is often quite possible to think of a particular variable, say U , which is left out
in the formulation of a causal rule, but should be taken into account in order to get a better
understanding of the causal mechanism. The original model, that was used to derive the causal
rule, must then be enlarged by incorporating U ; and this also demands to specify U ’s relationship
with the other variables in the model. How to do this depends on the intended use of the model.
If the model is intended to represent a randomized experiment, one can assume in the formulation
of the enlarged model that Ẋ ⊥⊥ U̇ | Ż = z.

However, as I have argued in 3.2.5, in social research an explanatory model can almost never be
formulated as a model representing a randomized experiment. It then depends on the details of
the model how to think of U̇ ’s role in the mechanism generating values of the outcome variable.
In any case, one would need observations of U̇ in order to quantify its causal role.
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