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NEPS Technical Report – Scaling the Data of the Competence 
Tests 

Abstract 

The National Educational Panel Study (NEPS) aims at investigating the development of 
competences across the whole life span. Tests for assessing the different competences are 
developed in NEPS and response data is collected from study participants on different 
competence domains in different age cohorts. The data of the competence tests are scaled 
using models of Item Response Theory (IRT). In the Scientific Use File (SUF) competence data 
are provided for researcher in form of item responses, manifest scale scores, as well as 
plausible values that allow investigating latent relationships. This paper aims at achieving 
different purposes. First, at describing the scaling model used to estimate competence 
scores in NEPS. This includes aspects like dealing with different response formats and 
accounting for missing responses in the estimation, as well as describing the parameters that 
are estimated in the model. Second, describing the various analyses that are performed for 
checking the quality of the competence tests. This includes item fit measures, differential 
item functioning, test targeting, unidimensionality, and local item independence. And third, 
outlining different approaches on how the competence data provided in the SUF may be 
used for further analyses. While the sections on the scaling model and the quality check are 
written for researchers familiar with IRT, the section on how to use the competence scores 
provided in the SUF is written for substantive researchers interested in using competence 
scores to investigate research questions. ConQuest-syntax is provided for some analyses 
examples. 

Keywords 

Item Response Theory, Scaling, Competence Tests, Technical Report, Plausible Values, Partial 
Credit Model 
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1. Introduction 
The National Educational Panel Study (NEPS) aims at investigating the development of 
competences across the whole life span. Tests for assessing the different competences are 
developed in the NEPS and response data is collected from study participants in different 
age cohorts. In this manuscript we describe the scaling model, the analyses performed for 
quality checks of the test items, as well as how competence scores in NEPS may be used in 
further analyses.  

Please note that the scaling procedure described in this paper was primarily developed for 
scaling competence tests in the domains of reading competence, mathematical competence, 
scientific literacy, and information and communication technologies literacy. Nevertheless, 
the scaling procedure described here serves as a guideline for the scaling of other 
competence tests in NEPS. Consequently, the scaling of most of the NEPS competence data 
followed the scaling models and procedures described here. Deviations from these 
guidelines may be indicated for particular test instruments and will be reported in the 
technical reports of the respective competence domains. Also note that established test 
instruments are deployed in NEPS as well. These are scaled according to the instructions in 
the test handbook. 

Many of the competence tests used in NEPS have been constructed specifically for 
implementation in NEPS. There are different stages of test construction. A large set of items 
is first developed and tested in different preliminary and pilot studies. The results of data 
analyses from these preliminary studies are then used for item selection and optimization. In 
the main studies only items that showed good psychometric properties in preliminary 
studies are used. Thus, in main studies we assume the items to have a good item fit. 
Nevertheless, the quality of the test is checked in the main studies to ensure data quality. 
The scaling model and quality analyses described in this paper are those performed for the 
main study data. Note, however, that the model and most of the analyses were also used to 
analyze the data of preliminary studies.  

This paper aims at achieving different purposes. First, describing the scaling model used to 
estimate competence scores. Second, describing the analyses performed for checking the 
quality of the tests developed in NEPS. And third, outlining how the competence data 
provided in the Scientific Use File (SUF1) may be used for further analyses. Note that while 
the present paper focuses on describing the analyses models, the respective results of the 
quality checks of the tests are presented in the technical reports of the different 
competence domains and age cohorts. While the sections on the scaling model and the 
scaling procedures are written for researchers familiar with Item Response Theory (IRT), the 
section on how to use the competence scores provided in the Scientific Use File (SUF) is 
written for substantive researchers interested in using competence scores to investigate 
their research questions. 

                                                      
1 Information on the access to data of the SUF as well as further information can be found on 
https://www.neps-data.de/de-de/datenzentrum.aspx 
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2. Competence tests in NEPS 
In the National Educational Panel Study a variety of competence domains are assessed. 
Consequently, various tests are constructed to adequately measure the respective 
competence domains in different age cohorts. Life-span domains, such as reading 
competence, mathematical competence and scientific literacy, are assessed coherently 
across the life span in order to allow for investigating change over time. A framework has 
been developed for each competence domain and tests are constructed according to this 
framework for different age cohorts (see e.g., Gehrer et al., 2012; Hahn et al., 2012; 
Neumann et al., 2012). Other competence domains are specific for certain age groups (e.g., 
orthography, Frahm et al., 2011) or subpopulations (e.g., native language Russian or Turkish, 
Kristen et al., 2011). Many tests that are implemented in NEPS have been constructed 
specifically for this purpose and most of them are scaled based on Item Response Theory. 
Additionally, already established tests are deployed in NEPS (e.g., for measuring vocabulary; 
Berendes, Weinert, Zimmermann, & Artelt, 2012). These are scaled according to the scoring 
procedure described in the respective handbook. An overview of the competence tests used 
in the National Educational Panel Study is given by Weinert et al. (2011). 

The tests assessing life-span competence domains are constructed according to a theoretical 
framework. With regard to reading competence, for example, the framework consists of text 
functions (informational, commenting, literary, instructional, and advertising texts) and 
cognitive requirements (finding information in text, drawing text related conclusions, and 
reflecting and assessing) into which the items may be classified (Gehrer et al., 2012). 
Regarding mathematics (Neumann et al., 2012), there are different content areas (quantity, 
change and relationships, space and shape, and data and chance) and cognitive components 
(mathematical communicating, mathematical arguing, modeling, using representational 
forms, mathematical problem solving, and applying technical abilities and skills). The 
framework for scientific literacy (Hahn et al., 2012) distinguishes between the knowledge of 
basic scientific concepts and facts (knowledge of science) and an understanding of scientific 
processes (knowledge about science). In information and communication technologies (ICT) 
literacy the framework (Senkbeil et al., 2012) includes both information literacy and 
technological literacy. This framework additionally distinguishes between different process 
components (define, access, manage, create, integrate, evaluate, and communicate) and 
content areas (word processing, tables, presentations, e-mail, and internet). When 
constructing the competence tests, items are developed that represent all different aspects 
of the framework. 

In the life-span competence tests, there are four different response formats2. These are a) 
simple multiple choice, b) complex multiple choice, c) matching items, and d) short-
constructed responses. Examples of the different response formats are given in Appendix A. 
In simple multiple choice (MC) items there are four response options with one option being 
correct and three response options functioning as distractors (i.e., they are incorrect). 
Complex multiple choice (CMC) items consist of a number of subtasks with one correct 

                                                      
2 Note that the response formats described here are those used in the IRT-scaled competence tests that are 
constructed to measure life-span domains (i.e., reading, mathematical, and scientific literacy). Further response 
formats may occur in other competence tests in NEPS. How these are dealt with is described in the respective 
technical reports. 
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answer out of two response options. Matching (MA) items require the test taker to match a 
number of responses to a given set of statements. MA items are only used for measuring 
reading competence and usually require assigning headings to paragraphs of a text. Some 
MA items consist of as many responses as there are statements, while others contain more 
response options than there are statements. Short-constructed response (SCR) items are 
only used in mathematics tests. They usually require a response in form of a number. 

In most of the studies in NEPS two competence domains are assessed together within the 
same wave. Usually reading and mathematics are assessed together in the first wave, while 
scientific literacy and ICT literacy are assessed together in the second wave. When different 
tests are jointly administered, the order in which the tests are administered must be 
considered. Previous studies (Adams & Carstensen, 2002) have shown that the position of 
item blocks within one booklet does have an effect on item difficulty. In order to account for 
effects of the position of a test within a booklet, the order of the competence domains was 
rotated. In the first wave, participants were randomly assigned to either work on the reading 
test first and then on the mathematics test – or vice versa3. The test order is then fixed and 
will be continued in subsequent waves. Subjects who received the reading test first in the 
first wave will always work on the reading test before the mathematical test in the following 
waves. 

3. General scaling model 
In this chapter we will introduce the general scaling model used to scale the competence 
data in NEPS. We will specifically point out how different response formats and missing 
responses were modeled and which test scores are estimated for the SUF.  

3.1 The Item Response Model 
The NEPS competence tests are constructed according to domain-specific frameworks 
(Weinert et al., 2011; Gehrer et al., 2012; Neumann et al., 2012; Hahn et al., 2012; Senkbeil 
et al., 2012). For every competence domain a unidimensional construct is assumed and the 
item construction is guided by several test characteristics, such as content or cognitive 
requirements. For each test, the number of items from the different conceptual 
differentiations is deliberately chosen to represent their relevance for the domain. Thus, an 
item response model for scaling NEPS competence data should preserve the weighting 
implemented by the number of items defined for each combination of conceptual 
differentiations (see Pohl & Carstensen, 2012). Consequently, the Rasch model (Rasch, 
1960/1980) or extensions of the Rasch model (i.e., the partial credit model; Masters, 1982) 
were chosen as scaling models since they preserve the weighting of items by construction. 
Furthermore, compared to the 2PL model (Birnbaum, 1968) as a plausible alternative IRT 
model, the interpretation of the Rasch model scale values is more straightforward (Wilson, 
2003, 2005).  

For scaling the competence data, the Mixed Coefficients Multinomial Logit Model (Adams, 
Wilson, & Wang, 1997), which is implemented in the software ConQuest (Wu, Adams, 

                                                      
3 Note that there are exceptions from this rule in some starting cohorts. 
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Wilson, & Haldane, 2007), was used. The Mixed Coefficients Multinomial Logit Model is a 
general model that includes the Rasch and the partial credit model as a special case.  

Item parameter estimates are obtained using marginal maximum likelihood estimation 
incorporating the EM algorithm. In this estimation the ability distribution of the persons are 
assumed to be normal (Adams, Wilson, & Wang, 1997). Moderate deviations from the 
assumed ability distribution do not impact the quality of the item parameter estimates 
(Mislevy, 1984). Person scores on the latent competence domains are estimated in two 
different approaches. The first approach consists of computing weighted maximum 
likelihood estimates (WLEs; Warm, 1989), which are point estimates and best represent each 
participant’s competence regarding observed responses only (and the assumed item 
response model). As a second approach for providing competence scores, the common 
latent distributions of competence scores and selected context variables will be provided in 
form of plausible values. This approach allows for unbiased population level analyses of 
competence distributions and context variables, and it requires a rather complex 
conditioning model. The two approaches of estimating competence scores are described in 
chapter 3.4. 

As test forms were presented to the test takers in different positions within the booklet (see 
section 2) position effects may be present in the estimated competence scores. When 
estimating item and person parameters, individual test scores are corrected for the position 
effect in the estimation of ability scores. This correction follows the rationale of the 
correction of booklet effects in the Program for International Student Assessment (PISA; see, 
e.g., OECD 2005), where booklet effects were accounted for in form of main effects.  

3.2 Incorporating different response formats  
As described above, different response formats are present in the competence tests. These 
are simple multiple choice items, complex multiple choice items, matching items, and short-
constructed responses. Items with simple multiple choice responses as well as short-
constructed responses result in dichotomous variables which are analyzed using the Rasch 
model. Complex multiple choice items and matching items consist of item bundles with a 
common stimulus and challenge the assumption of local stochastic independence of the 
single responses (see, e.g., Yen, 1993). In order to account for this dependence, the items 
may be aggregated to an ordinal score for each item bundle and may be analyzed via the 
partial credit model (e.g., Andrich, 1985; Zhang, Shen, & Cannady, 2010).  

The partial credit model (Masters, 1982) assumes the probability to respond in the higher of 
two adjacent categories to follow the same item characteristic curve as in the Rasch model 
for dichotomous data. Assuming the response probabilities over all possible item scores to 
be one, the following model for ordinal data can be derived: 
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with 

0

0
( ) 0,ik

k=
− ≡∑ θ δ   

where Xin denotes the response of person n on item i, x denotes the categories of the item, 
θn denotes the trait level of person n, and δik the item parameters.  

When an instrument is composed of items with different response formats, the question of 
how to weight the different item response formats in the item response model arises. In the 
Rasch and the partial credit model, the weight of an item is determined by its maximum 
score. For polytomous items the maximum number of score points usually corresponds to 
the number of score options, while for dichotomous items the maximum number of score 
points credited for each item is one. These score points have the function of item 
discrimination constants. The maximum score of an item is, however, to some extent 
arbitrarily chosen. Should a correct response to a dichotomous subtask of a CMC item be 
scored as high as a correct response on a simple MC item with four response options? 
Furthermore, CMC items with a higher number of score points might be more informative 
and more discriminating than complex items with a lower number of subtasks. In order to 
determine an appropriate weight for the different response formats, the impact of different 
approaches to scoring items with different response formats on discrimination and the fit of 
the items has been investigated in empirical studies on NEPS competence data (Haberkorn, 
Pohl, Carstensen, & Wiegand, 2012). The authors concluded that – given that dichotomous 
items (MC and SCR items) are scored with zero (for an incorrect response) and one (for a 
correct response) – scoring each subtask of a CMC and MA item with 0.5 points best fits the 
empirical data. Therefore, in the scaling of competence data in NEPS, the general rule was 
posed to credit each score point of a polytomous item with 0.5 points in the response 
model. With this scoring rule a simple MC item (with four response options) is weighted 
twice as much as a single subtask of a CMC item (with two response options) and CMC and 
MA items with more subtasks are weighted higher than those with less subtasks. Exceptions 
from this rule may be applied when there are theoretical reasons for an alternative scoring 
of the item. 

3.3 Treating missing responses in items 
There are four different kinds of missing responses in the competence data. These are 1) 
items that are not administered (due to the testing design), 2) invalid responses (e.g., more 
than one response to a simple MC item), 3) omitted items, and 4) items that were not 
reached due to time limits (i.e., omitted responses after the last valid response). The 
ignorability of the missing responses depends on the causes of missingness. While in most 
test designs missing responses due to not administered items are missing completely at 
random, the omitted and not reached items are usually nonignorable (Mislevy & Wu, 1988) 
and often depend on the difficulty of the item and on the ability of the person. There are 
different approaches for treating missing responses, and several studies (e.g., Culbertson, 
2011; De Ayyala, Plake, & Impara, 2001; Finch, 2008; Lord, 1974; Ludlow and O'leary, 1999; 
or Rose, von Davier, & Xu, 2010) have investigated their performance. These studies showed 
that ignoring missing responses, multiple imputation (Rubin, 1987), as well as model-based 
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approaches (Glas & Pimentel, 2008; Holman & Glas, 2005; O‘Muircheartaigh & Moustaki, 
1999) result in unbiased parameter estimates, whereas treating missing responses as 
incorrect for either item or person parameter estimation results in biased parameter 
estimates. Pohl, Gräfe, and Hardt (2011), Gräfe (2012) as well as Pohl, Gräfe, and Rose 
(2012) compared the different approaches for treating missing responses in different 
domains and cohorts in NEPS and found indications that ignoring missing responses in the 
scaling model results in unbiased item and person parameter estimates. This closely 
resembles the results found in simulation studies (Rose, von Davier, & Xu, 2010). For scaling 
the competence data in NEPS, all kinds of missing responses were thus ignored. 

3.4 Estimation of competence scores 
Within the Scientific Use Files, two different estimates of competences will be provided. 
Weighted maximum likelihood estimates (WLEs) will be available with the first data release. 
Due to the complex generation process, plausible values will be made available in later 
updates of data releases.  

3.4.1 Weighted maximum likelihood estimates 

The WLE as a typical point estimate expresses the most likely competence score for each 
single person given the item responses of that person. This is what would be reported back 
to single participants, since point estimates are unbiased estimates of individual scores. WLE 
are corrected for a part of the bias of the maximum likelihood estimate (MLE), which tends 
to have too extreme values and leads to overestimation of the variance of the ability 
distribution (Warm, 1989). In many cases the variance of WLE is still larger than the variance 
of the true person parameters. However, with sufficiently large numbers of items their 
variance gets close to the latent variance of the response model (Walter, 2005). WLE scores 
include measurement error components and their variance includes error variance. An 
inference on this uncertainty of measurement can, however, not be drawn from the WLEs, 
since the variance of the true parameters cannot be separated from the error variance. In 
order to obtain unbiased analysis results of population parameters that are purified from 
measurement error, latent modeling of common distributions of competences and context 
variables using plausible values may be employed.  

3.4.2 Plausible values 

Plausible values are basically multiple imputations (Rubin, 1987) for the latent variable in an 
item response model (Mislevy, 1991). They are Bayesian scale scores obtained as random 
draws from a posteriori competence distribution that is a function of the item responses and 
the context variables included in a multivariate response model. Aggregating the random 
draws on a group level shall give unbiased group level results. This approach requires the 
inclusion of the context variables used in later analyses into the measurement model. These 
context variables are included in the model via latent regression or multidimensional IRT-
models and are used for the estimation of the abilities of the persons (see, e.g., Adams, Wu, 
& Carstensen, 2007; Carstensen, Knoll, Rost, & Prenzel, 2004). The plausible values then 
reflect relations between context variables and competence measures, the uncertainty of 
these relations due to measurement error, and the measurement error in general.  

Since plausible values are simply random draws from the posterior distributions, and any 
one set of plausible values will give unbiased estimates of population and subpopulation 
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level competence distributions, these values are not suitable “scores” for the individuals in 
the sample. The average of these estimates within subgroups will, however, give unbiased 
estimates of the group-level statistics of interest. In general, five sets of plausible values are 
drawn (recommendation by Little & Rubin, 1987), although also more can be drawn. 

Since in NEPS many context variables are collected, the challenge in estimating plausible 
values is to find an appropriate conditioning model that is suitable for a variability of 
possible research questions. Since this is a very complex endeavor, plausible values will be 
provided in later releases of the SUF. 

4. Checking the quality of the test 
Before estimating ability scores, the quality of the items in each competence domain and for 
each cohort is checked in various analyses. These include fit of the subtasks of CMC and MA 
items, item fit, differential item functioning, test targeting, unidimensionality, and local item 
dependence. 

4.1 Fit of subtasks 
Before aggregating the subtasks of the complex items to a polytomous score, in a first step, 
we test the fit of the subtasks of all CMC and MA items. For this purpose, a dichotomous 
Rasch model is fitted to all disaggregated items (for each CMC and MA item the single 
subtasks are included in the analysis4). The weighted mean square (WMNSQ; Wright & 
Masters, 1982), its t-value, the empirically approximated item characteristic curve (ICC), and 
the point biserial correlation of the responses with the total score (relative number of 
correct responses on the total number of valid responses) are used to evaluate the fit of the 
single subtasks.  

Subtasks with a dissatisfying fit are excluded from the following analyses. Subtasks with a 
satisfactory fit are aggregated to polytomous variables indicating the number of correct 
responses in a given CMC or MA item. For CMC and MA items with many subtasks, the 
frequency of a total score of 0 on the polytomous variable representing the respective CMC 
or MA item is often relatively low and will most likely result in estimation problems when 
included in an IRT analysis. Therefore, categories with an absolute frequency of less than 
N = 200 were subsumed with the adjacent category.  

For MA items, in which the number of responses equals the number of statements to be 
matched to, there is an extremely high linear dependency of the responses to the subtasks. 
If a person correctly matches four out of five responses to the five statements, the fifth 
response is perfectly determined. If persons get four out of five subtasks right, a correct 
response to the last subtask is determined. As a consequence, a score of one point less than 
the maximum score does not occur (or very rarely). In order to avoid estimation problems 
and since there is no additional information gained from this last response, the second last 
category is collapsed with the maximum score category for these variables. Note that, due to 
the collapsing of categories, the score of the polytomous CMC and MA items does not 
necessarily indicate the number of correctly answered subtasks. 

                                                      
4 ignoring the local item dependence of these items 
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4.2 Item fit 
The fit of the items is evaluated using various fit measures. The quality of all items is 
evaluated by the weighted mean square (WMNSQ; Wright & Masters, 1982; Wu, 1997), 
correlations of the item score with the total score, the estimated item discrimination, and 
the item characteristic curve. Additionally, a distractor analysis is performed (correlation of 
incorrect response with the total score). The MNSQ and WMNSQ (Wright & Masters, 1982) 
are indices that describe the deviation of the observed probability for a correct response 
from the model implied probability for a given ability level. In contrast to the MNSQ, the 
WMNSQ weights deviations from the curves more strongly for response probabilities close 
to 0.5 and less for very low and very high probabilities. A WMNSQ near 1 indicates a good fit. 
A WMNSQ lower than 1 indicates an overfit, that is, the item discriminates more than 
assumed in the model. WMNSQ scores greater than 1 usually occur if the discrimination of 
the item is low or if the empirically estimated response curve is not monotone increasing. 
WMNSQ below 1 are considered to be a less serious violation to model fit than WMNSQ 
greater than 1. The respective t-values are inference statistical measures for the null 
hypothesis that the WMNSQ equals one. Note that, due to the large sample size, most of the 
t-values indicate a significant deviation from a WMNSQ of 1. As Wu (1997) showed, the fit 
statistics depend on the sample size. We applied the rules of thumb displayed in Table 1 for 
evaluating the WMNSQ and its respective t-value in NEPS. 

Table 1: Rules of thumb for WMNSQ fit values 

  Noticable item misfit  Considerable item misfit 

N  Weighted 
MNSQ 

t  Weighted  
MNSQ 

t 

7500  > 1.15 >| 6|  > 1.20 >|8| 

15000  > 1.10 >| 8|  > 1.15 >|10| 

In addition to the WMNSQ and its t-value, the correlations of the item score with the total 
score are evaluated. The correlation of the item score with the total score should be 
positive. Subjects with a high ability should be more likely to score high on the item than 
subjects with a low ability. Furthermore, correlations of incorrect response options and the 
total score are evaluated. The correlations of the incorrect responses with the total score 
allow for a thorough investigation of the performance of the distractors. A good item fit 
would imply a negative or a zero correlation of the distractor with the total score. Distractors 
with a high positive correlation may be an indication of an ambiguity in relation to the 
correct response. Based on experiences with several data sets in NEPS and other large scale 
studies, we formulated the rules of thumb displayed in Table 2 for evaluating the respective 
correlations in NEPS. 

Aside from fit statistics, which provide a form of aggregated information, we investigate the 
fit of the items by comparing the model-implied item characteristic curve with the 
empirically estimated one. If considerable deviations of the curves were found, the 
appropriateness of the item was further investigated by the item developers. 
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Table 2: Rules of thumb for the correlation of item score and distractor with the total score  

 Good Acceptable Problematic 

Item score > 0.30 > 0.20 < 0.20 

Distractor < 0.00 < 0.05 > 0.05 

Although the scaling model assumes Rasch-homogeneity, that is, it equally weights the items 
that have the same response format, the equality of the item discriminations is empirically 
tested. In order to do this, item discriminations are estimated using a generalized partial 
credit model (2PL; Muraki, 1982). Besides evaluating the estimated discriminations on item 
level, the 2PL model is compared to the 1PL model using Akaike's (1974) information 
criterion (AIC) as well as the Bayesian information criterion (BIC, Schwarz, 1978).  

4.3 Differential item functioning 
Differential item functioning (DIF) is a form of testing measurement invariance across 
subgroups. DIF exists when subjects with the same trait level have a different probability of 
endorsing an item. In such cases, the item functions differ between different subgroups and 
the item favors one of the subgroups. In such cases, one should not compare the 
competence of the different subgroups to each other, since differences in competence 
scores may be due to differences between subgroups and differences in item difficulties. 
NEPS aims at constructing tests that are fair for subgroups. Therefore, DIF is one exclusion 
criterion in the process of item development, and it is investigated for the NEPS competence 
data of the main studies for different subgroups. 

Differential item functioning is investigated in NEPS by applying multiple-group IRT analyses 
in which difficulties are allowed to vary across subgroups. In the model applied, main effects 
of the group variable as well as interaction effects of item and group are modeled. Note that 
main effects do not indicate DIF but rather mean differences in competence between 
subgroups. DIF is, however, present when there are differences in item difficulties. Based on 
experiences with preliminary data, we consider absolute differences in estimated difficulties 
that are greater than 1 logit as very strong DIF, absolute differences between 0.6 and 1 
noteworthy for further investigation, differences between 0.4 and 0.6 as considerable but 
not sincerely, and differences smaller than 0.4 as no considerable DIF. Furthermore, an 
overall test is performed by comparing a model including item by group interactions to a 
model that only allows for main effects of the group variable. AIC and BIC are used to 
evaluate model fit. 

The variables for which DIF is tested in NEPS include gender, migration background, the 
number of books at home (as a proxy for socioeconomic status), school type or degree, as 
well as test position in the booklet. Further DIF variables were used when considered 
important for a cohort or competence domain. Migration background was chosen as a DIF 
variable since NEPS specifically oversamples persons with a migration background and aims 
at drawing conclusions about the educational development of persons with a migration 
background. To specify the migration background for the persons, the native country of the 
target person and of the parents was used. A dichotomous variable was constructed 
indicating no migration background when both the target person him- or herself as well as 
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his or her parents were born in Germany. A target person was classified as having a 
migration background if either the person itself or one of its parents was born in a foreign 
country. This means that persons of the first, 1.5, and second generation were assigned to 
have a migration background (see Stanat & Segeritz, 2009, for details of the indicators). In 
case the relevant variables were not available in some cohorts, a proxy (e.g., the first 
language of the target person and the parents) was used. The number of books at home was 
used as a proxy for socioeconomic status (see, e.g., Baumert & Bos, 2000; Elley, 1994). A 
dichotomous variable was constructed distinguishing between target persons with up to 100 
books and target persons with more than 100 books at home (see, e.g., Paulus, 2009). This 
distinction was used, since it results in commensurate group sizes. School type was included 
in DIF analyses as a dichotomous variable differentiating between persons in grammar 
school (German: Gymnasium) or having an A-level degree (German: Abitur), and persons in 
other school types or having lower school degrees. A dichotomous distinction was used 
because the concept of grammar school is similar in all Federal States, while other school 
forms are not coherently defined in the different Federal States. DIF for the position of the 
test in the booklet was estimated in order to ensure that test order does not distinctively 
affect certain items. When there were more than 300 cases with missing responses to the 
DIF variable, the persons with missing responses were included as a separate group in the 
DIF analysis. Small group sizes may cause estimation problems when estimating DIF (Clauser 
& Mazor, 1998; Ziesky, 1993). Thus, when a DIF variable contained less than 300 missing 
responses, the respective cases were deleted from the DIF analysis.  

4.4 Test targeting 
The information of an item, and thus, the measurement precision, is highest for subjects that 
have an ability similar in size to the difficulty of the item. The test information is the sum of 
the item information and depends on the distribution of the item difficulties. The 
measurement precision of an ability estimate is described by its standard error. The standard 
error of measurement is inversely related to the test information. A good test targeting is 
obtained if there is high test information, that is, a low standard error, for the whole range 
of the ability distribution. Since ability distributions are often normally distributed, items are 
constructed so that their difficulties resemble this distribution. This results in very precise 
ability estimates for (the many) subjects with average ability and in less precise ability 
estimates for (the few) subjects with a very low or very high ability5. 

4.5 Dimensionality of the test 
All competence tests in NEPS are constructed to measure a unidimensional construct. 
Nevertheless, the dimensionality of the test is evaluated in the data. Subdimensions are 
postulated based on the different aspects of test construction (Neumann et al., 2012; Gehrer 
et al., 2012; Hahn et al., 2012; Senkbeil et al., 2012).  

The subdimensions differ for different competence domains. They are, however, all based 
on construction principles for the test. For reading (Gehrer et al., 2012), for example, 
subdimensions are based on a) cognitive requirements and b) text functions. 

                                                      
5 Note that this is different in adaptive testing designs, in which an equally high measurement precision of 
ability is aimed for the whole range of the ability distribution. 
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Multidimensional models are estimated using quadrature (for low dimensional models) or 
Monte Carlo (for high dimensional models). The dimensionality is evaluated by comparing 
model fit of multidimensional models to the unidimensional one as well as by estimated 
correlations between subdimensions. If the correlations between the subdimensions are 
high (>.95, see Carstensen, in press), an unidimensional model may be assumed. Model 
comparison is performed based on information criteria, that is, on Akaike's (1974) 
information criterion (AIC) as well as the Bayesian information criterion (BIC; Schwarz, 1978). 
The BIC takes the number of estimated parameters into account and, thus, prevents from 
overparametrization of models.  

4.6 Local item dependence 
Local item dependence (LID) may occur for item bundles (Rosenbaum, 1988) or testlets 
(Wainer & Kiely, 1987) that share a common stimulus. This is especially the case for reading 
tests where a set of items refers to the same text. Local item dependence may lead to an 
underestimation of standard errors, bias in item difficulty estimates, inflated item 
discrimination estimates, overestimation of the precision of examinee scores, and 
overestimation of test reliability and test information (Sireci, Thissen, & Wainer, 1991; 
Wainer, 1995; Wainer & Lukhele, 1997; Wainer & Thissen, 1996; Wainer & Wang, 2000; Yen, 
1993). We investigated the impact of LID using either the Rasch testlet model (Wang & 
Wilson, 2005) or a multidimensional model. In the multidimensional model, a separate 
dimension is modeled for each item bundle for which LID is expected, and the correlation 
between the dimensions is used as a measure of LID. In the Rasch testlet model, the variance 
of the items is additively decomposed into a common part and a testlet specific part, 
allowing us to investigate the variance proportion of the item responses that emerges due to 
the item bundle. If applicable, local item dependence is evaluated in a test using either of 
the models.  

5. How to work with competence data 
There are different ways of working with competence data in substantive analyses. In the 
Scientific Use File, item data as well as two different competence scores (WLEs and plausible 
values) are or will be provided. Depending on the specific research question, whether 
measurement error should be accounted for, and on the knowledge about specifying 
measurement models, different approaches can be recommended for users. We will focus 
on four different approaches. In the following, we will describe how to choose between 
these approaches. Note, that these four approaches are not an exhaustive list. They are a 
selection of approaches considered useful for working with competence data provided in 
NEPS.  

In a first step, a researcher working with competence data has to decide whether he or she 
wants to account for measurement error in the analysis. Measurement error may have an 
impact on the point and interval estimates of population parameter (e.g., means, variances, 
correlations, or regression coefficients). Measurement error masks relationships (e.g., Aiken 
& West, 1991; Cohen, Cohen, West, & Aiken, 2003; Maddala, 1977) and may result in biased 
parameter estimates (e.g., correlations). This is called attenuation bias. If, for example, the 
true correlation between two competence scores measured with tests like in NEPS is 0.7, 
latent correlations will reveal this correlation, while the correlation estimated using manifest 
competence scores is confounded with measurement error and, therefore, lower (in the 
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simulated example here: cor = 0.61). Also, percentiles and population variance estimates are 
biased when using manifest competence scores and unbiased when using latent 
competence scores. Both manifest and latent competence scores provide unbiased point 
estimates of population means and regression coefficients. However, standard errors of 
these estimates are underestimated using manifest scores. An illustrative example of these 
properties can be found in OECD (2009b). For an example in large scale assessment studies 
see Adams, Wu, and Carstensen (2007). 

Using manifest competence scores is a very convenient approach since competence scores 
are included in the analyses just as any other manifest variables. Manifest competence 
scores in NEPS are provided in form of weighted maximum likelihood estimates (WLEs). 
Working with WLEs is described in chapter 5.1. Accounting for measurement error in the 
analyses does require more complex procedures. We describe three different approaches 
accounting for measurement error in an analysis with competence data that allow for latent 
variable modeling. One of these approaches is to use plausible values which are provided in 
later releases of the Scientific Use File. Chapter 5.2 describes how to work with these data. 
Plausible values are, however, not provided in the first releases of the SUF, and even then 
they may not be convenient for all research questions6.  

As described above, for using plausible values to investigate specific research questions, the 
respective variables used in these research questions need to be included in the conditioning 
model. If, for example, a researcher wants to investigate the effect of gender on 
mathematical competence, gender must be included in the conditioning part of the 
measurement model generating the plausible values. If the interaction of gender and self-
concept on mathematical competence shall be investigated, the interaction of gender and 
self-concept needs to be included in the measurement model. A researcher needs to be 
aware of this and check whether the variables she/he would like to use in the analysis are 
included in the measurement model (in the respective functional form) for the plausible 
values. If the variables of interest are not part of the conditioning model7, one might want to 
consider using one of the other two approaches for investigating latent relationships with 
competence scores. 

If a researcher wants to investigate latent relationships with competence data from the first 
data releases, he or she may either include the measurement model in their analyses 
(approach 3, chapter 5.3) or estimate plausible values him- or herself (approach 4, chapter 
5.4). While approach 3 is very elegant, since it incorporates the measurement and the 
analysis in one model, it may easily become a quite complex task if many variables are 
included in the structural model. Estimating plausible values yourself is a good alternative, 
when one wants to estimate latent relationships in more complex analyses. How to choose 
between the different approaches is depicted by a decision tree in Figure 1. 
                                                      
6 With the release of plausible values in later releases of the Scientific Use File, a documentation of the 
estimation model will be provided that allows judging whether the plausible values provided are suitable for 
answering a specific research question. 
7 Note that not all variables used to answer a research question necessarily need to be in the conditioning 
model. It is sufficient that the relevant variables are well explained by the variables that are in the conditioning 
model. Research is currently conducted investigating the robustness of analyses results to misspecification of 
the conditioning model given that a large set of context variables is included in the conditioning model. 
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Figure 1: Decision tree for choosing an approach for working with competence data 

In the following sections the different approaches are described in more detail. Note that 
when performing substantive analyses, sampling weights also have to be taken into account 
(see Aßmann et al., 2011, for a description of the sampling weights in NEPS). 

5.1 Using weighted maximum likelihood estimates 
The WLEs are available in the first release of the competence data. As described above, the 
weighted maximum likelihood estimates are the best point estimates of the individual 
competence scores. WLEs have very similar properties as sum scores of correct responses in 
test items. Both are manifest scores that do not take measurement error into account. WLEs 
have, however, some advantages over sum scores. They do, for example, facilitate adequate 
treatment of missing responses (see section 3.3 for the treatment of missing responses) and 
comparability of competence scores over different waves and cohorts. WLEs may be used in 
further analyses just as other manifest variables. WLEs in the first SUF release are 
constrained to have a mean of zero. Values above zero indicate abilities above average, 
while WLE scores below zero indicate abilities below average. The variance of the WLE 
scores is not restricted. Note that WLE scores are confounded by measurement error. If 
latent distributions or relations to other variables are to be estimated, one of the other 
three methods for working with competence data are advised for use.  

Using latent competence scores 
 Accounting for measurement error 
 More complex to use 

2. Using plausible values provided 
in the Scientific Use File 

 If not available, yet, or 
 If not appropriate for your 

own research questions 

3. Include the 
measurement model 
in analysis 
 Simultaneous 

modeling 
 May be difficult to 

estimate for very 
complex models 

4. Estimate plausible 
values yourself 
 Two-stage 

modeling 
 Very convenient 

especially for more 
complex models 

Do you want to account for measurement error? 

Using manifest competence scores 
 Not accounting for measurement 

error 
 Simple to use 

1. Using Weighted Maximum 
Likelihood Estimates 

no yes 
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5.2 Using plausible values provided in the Scientific Use File 
Plausible values are competence estimates that describe a range of possible values for a 
student's ability. They are ability estimates that take information about group membership 
(e.g., gender or socioeconomic status) into account. For each individual a distribution of 
possible values is estimated that is derived from his or her responses to the items, as well as 
from information about the person (conditioning variables such as gender or socioeconomic 
status). Plausible values are random draws from this distribution. Thus, if a male student, say 
Ben, and a female student, say Laura, have the same response pattern to the items in the 
competence test, they will not have the same distribution of possible ability values. This is 
because information on conditioning variables (e.g., gender) is taken into account and the 
ability estimates are shifted towards the mean of the competences of the respective group. 
So, if males have on average a higher mathematical competence than females, Ben will have 
higher plausible values than Laura, although both answered the same items correctly. This 
example emphasizes that plausible values are not suitable for estimating individual ability 
scores. They do not represent unbiased scores on the individual level! They are, therefore, 
not suitable for reporting back ability levels to students. Plausible values aim at estimating 
unbiased group level statistics (e.g., mean differences in competence scores between males 
and females). They do provide unbiased point estimates of group statistics (e.g., means, 
mean differences, variances, correlations, regression coefficients) and of their corresponding 
standard errors (and therefore p-values). 

Usually, five plausible values are provided for each person and each competence domain. 
Analyzing plausible values requires performing as many analyses as there are plausible 
values for each individual. The analysis is performed repeatedly with each set of plausible 
values. The mean of the statistic (e.g., a mean difference or a regression coefficient) over all 
analyses gives the population estimate for that statistic. The variability of the estimated 
statistic across the five analyses reflects the uncertainty of the estimate that is due to 
measurement error. The estimated standard error of the statistic reflects uncertainty due to 
sampling. Combining the variance due to measurement error and the variance due to other 
sources, like sampling error, gives adequate estimates of the standard error of the group 
level statistic (Rubin, 1987).  

Rubin (1987) and Mislevy (1991) provide formulas for calculating the point estimate of the 
statistic of interest as well as for the appropriate standard error of this estimate. From the m 
analyses on the m datasets, an estimate of the statistic of interest is estimated as 

 
1

m

m *l
l

Q Q / m
=

=∑  (Eqn.2) 

with Q being the statistic of interest, l=1,…,m being the sets of plausible values, and Q*l being 
the statistic of interest estimated in data set l. 

The associated variance of mQ is 
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where  

 
1
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= ∑  (Eqn.4) 

is the within-imputation variability (with *lU  being the variance estimate of the statistical 
parameter of interest in analysis l), and 
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is the between-imputation variability. The α%-confidence interval for Q is  
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Table 3: Results of a hypothetical analysis. The table shows the point estimates, standard errors, and 
error variances of the mean difference in mathematical competence between males and females 
using each set of plausible values. 

Analysis Estimate of mean 
difference 

S.E. Error variance 
(S.E.2) 

1 0.35 0.040 0.00160 

2 0.33 0.035 0.00123 

3 0.40 0.042 0.00176 

4 0.32 0.037 0.00137 

5 0.32 0.041 0.00168 

Mean 0.344  0.00153 

Variance 0.001138   

                                                      
8 The variance was calculated according to formula (Eqn.5) for the estimation of the between-imputation 
variability 
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The following example serves to illustrate the estimation of point estimates and confidence 
intervals based on plausible values. As an example, we consider the research question of 
whether a gender difference exists in the mean mathematical ability score. Suppose m = 5, 
that is there are five plausible values for each individual on mathematical competence. Thus, 
if the mean difference between males and females is to be estimated, the mean difference 
needs to be estimated five times. In each analysis, the mean differences and the standard 
error are estimated based on one of the five sets of plausible values using any convenient 
software. Table 3 shows the results of our hypothetical analysis. For each set of plausible 
values there is a point estimate of the mean difference as well as a standard error (S.E.). The 
error variance displayed in Table 3 is the square of the standard error. 

The point estimate of the mean difference is mQ =0.344, the mean of the estimated mean 
differences in each of the five analyses. The within-imputation variability is 0.00153 (see 
Equation 4), the mean of the error variance estimates in the five analyses. This variation 
reflects sampling error. The between-imputation variability is 0.00133 (see Equation 5), 
which is the variance of the estimated mean differences in the five analyses. This variation 
reflects the measurement error. The associated variance Tm of the mean difference of 0.344 
may now be calculated as 0.00153+[(5+1)/5]0.00113=0.002886 (see Equation 3). The 
respective standard error is then 0.0537215, the square root of this variance. The degrees of 
freedom for constructing a confidence interval are  

2

0 0015315 5 1 1 5 10 00133
5

.( )
.

 
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≈ − + + 
 

 

 (see Equation 7) and, thus, the t-value of a two-sided test on an alpha-level of 5% is 2.131 
(value obtained from the t-distribution). With the standard error, confidence intervals (CI) 
may be estimated and inference statistic performed. The 95% CI is  

[0 344 2 131 0 0537215 0 344 2 131 0 0537215] [0 230 0 459]. . . , . . . . , .− ⋅ − ⋅ =  

(see Equation 6). Since the confidence interval does not include zero, this mean difference 
significantly differs from zero on an alpha-level of 5%.  

Of course, such analyses may not only be performed with mean differences, but with any 
statistical parameter of interest. Many statistical software programs (e.g., Mplus, Muthén & 
Muthén, 1998-2010; Stata, McDonald, 2008/2011; or HLM, Raudenbush, Bryk, & Congdon, 
2004) can deal with data sets using plausible values, and they do provide correct estimates 
of the parameter estimates and their standard errors. Illustrative data analysis manuals for 
working with plausible values in SAS (OECD, 2009a) and SPSS (OECD, 2009b) are provided for 
PISA data. 

An advantage of plausible values provided in the Scientific Use File is that analyses can be 
performed just as with any other manifest variables and no specific software is required. The 
difference is that the analysis is performed several times (each with a new set of plausible 
values) and that the results of these analyses need to be combined using straightforward 
formulas. Thus, since analyzing available plausible values requires far less specific knowledge 
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than specifying the appropriate measurement model, plausible values are a tool, which 
enable a wide range of researchers to perform unbiased analyses.  

If only one set of plausible values (instead of all five) is used for an analysis, the results will 
still give unbiased estimates of the statistic on the group level. The standard error of the 
statistic, however, will be underestimated and inferences will be too progressive. Note that 
the uncertainty due to measurement error is only incorporated if a number of analyses with 
different plausible values are performed and the results of the analyses are aggregated. 
Note that aggregating plausible values already on the individual level is not an appropriate 
analysis strategy, since the mean of plausible values is neither a good point estimate nor 
does it provide unbiased group-level estimates (e.g., von Davier, Gonzalez, & Mislevy, 2009). 

Since finding an appropriate measurement model for drawing plausible values that are 
suitable for many research questions is very complex for the NEPS data, further research on 
appropriate models is necessary, and plausible values will be provided in later releases of the 
Scientific Use Files. 

5.3 Including the measurement model in the analysis 
The measurement model for a competence domain may also be included in structural 
analyses. This approach models measurement and structural part of the model 
simultaneously. It is a common approach in structural equation modeling, where both 
measurement and structural model are combined in one model. Similarly, this may also be 
done with IRT measurement models (Wilson & deBoeck, 2004). An advantage of this 
procedure is that latent relationships may be investigated (vs. manifest ones in the first 
approach using WLEs) and that standard errors may be estimated directly since everything is 
estimated in one model (vs. the two-step procedure encountered in the plausible-values 
approaches). This approach is also very convenient for dealing with missing values in the 
context variables, since the latent ability may be used for a simultaneous modeling of the 
missing responses (see Aßmann, Carstensen, Gaasch, & Pohl, 2012). This procedure may, 
however, reach its limitations when the number of latent variables becomes very high or the 
model becomes very complex (e.g., many latent variables, hierarchical structures). In these 
cases, estimation of the model may be difficult. 

As an example, we included explanatory variables for the competence score in the 
measurement model in ConQuest (see Figure 2 for the graphical display of the model and 
the respective syntax in Appendix B9). In the example in Appendix B, gender (0 – female, 1 – 
male) is included in the model as a predictor for reading competence10. The regression 
coefficient estimated in the model (see ConQuest output in Appendix B) is a measure for the 
relationship between the latent ability score and gender. For identification the additive 
constant of the regression is set to zero. The unstandardized regression coefficient for 
gender is -0.175 logits, indicating that males have a 0.175 lower reading ability than females. 

                                                      
9 Note that in this example there are only dichotomous items. In most of the competence data in NEPS, there 
will also be polytomous scored items. The respective scaling syntax will be provided in the technical reports of 
the different competence domains. 
10 Note that the position of the test in the booklet is also included in the model in order to account for order 
effects (see section 3.1) 
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This difference is statistically significant (SE=0.032, 95%-confidence interval [-0.238,-0.112]). 
The error variance is 1.36. Of course, also other parameters of interest (e.g., multiple 
regression coefficients) may be estimated and one may use any type of software that is 
capable of estimating IRT models (specifically the partial credit model) to include the 
measurement model in their analyses. 

 

 

 

 

 

 

 

Figure 2: Including the measurement model of mathematical competence in the analysis of gender 
effects on mathematics.Yi denote the response variables of the mathematics items and Ma the latent 
mathematics competence score.  

5.4 Estimating plausible values 
As has been described above, to investigate the relationship of competence measures with 
other variables, the relevant variables need to be included in the conditioning model for 
estimating plausible values. If this is not the case, one option is to estimate plausible values 
yourself, including the relevant variables in the conditioning model. Using plausible values is 
a two-step approach. In the first step, plausible values are estimated including relevant 
conditioning variables in the measurement model. In a second step, analyses of interest are 
performed using the different sets of plausible values and point and interval estimates are 
obtained as described in 5.2.  

The advantage of this procedure is that the conditioning model needs to include only the 
variables of the particular research question. In contrast to including the measurement 
model in the analysis (see approach 5.3) this approach may easily deal with a larger number 
of conditioning variables. After estimating plausible values, classical statistical analyses may 
be performed in the usual way with any type of software. The analyses are, however, 
performed for each of the sets of plausible values (usually five), and the results of the 
analyses are aggregated as described in chapter 5.2. Note that, if nonlinear relationships are 
of interest, nonlinear terms need to be included in the conditioning model. 

An example of a ConQuest-syntax for estimating plausible values for mathematical 
competence can be found in Appendix C. In this model, gender, school type, and age are 
included as main effects in the conditioning model. The resulting plausible values are 
suitable for analyses including these variables (or variables that are well explained by these 
variables). For example, one may investigate the following research questions: 

… 

gender 
γ 

Ma 

Y1 

Y2 

Y3 



Pohl & Carstensen 

 

 

NEPS Working Paper No. 14, 2012  Page 22 

1. Is there a mean difference in mathematical competence between males and females? 

2. How much variance does school type explain on mathematical competence? 

3. How well does school type explain mathematical competence, controlling for age? 

The estimated plausible values in this example are not necessarily suitable for answering 
research questions like: 

4. How much variance of mathematical competence do gender and socioeconomic status 
explain? 

5. Is the effect of gender on mathematical competence moderated by age? 

For answering research question 4, socioeconomic status needs to be included in the 
conditioning model. For answering research question 5, the interaction of gender and age 
must be considered in the conditioning model. 

Note that not all variables used in the analyses necessarily need to be included in the 
measurement model. If the variables in the measurement model are sufficient to model the 
relationship of a variable of interest and competence, the respective variable of interest 
does not need to be included in the measurement model for estimating plausible values. If, 
for example shoe size, weight, and clothing size are included in the measurement model for 
estimating plausible values for a certain competence, analyses on relationship estimates of 
the competence (using the respective plausible values) with body height are very likely to be 
unbiased. This is because body weight is well explained by the other three variables.  

Many large-scale studies, such as the National Assessment of Educational Progress (NAEP) 
and the Programme for International Student Assessment (PISA), make use of this property. 
In these studies, a large number of context variables are present. In NAEP (Allen, Carlson, & 
Zelenak, 1999) and PISA (OECD, 2012), the context variables are included in the 
measurement model in form of orthogonal factors. In a factor analysis, as many orthogonal 
factors are extracted from the conditioning variables as required to explain at least 90% of 
the variance of the conditioning variables. The factor scores are then included in the 
measurement model for estimating plausible values. Although not all context variables are 
included in the measurement model, since the context variables are well explained by the 
factors, the respective plausible values may well be used to estimate most of the 
relationships of the competence scores and the context variables. 

Once the desired plausible values are estimated, one may proceed with the analyses as 
described in section 5.2. 
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Appendix 

Appendix A: Response formats in the competence test 
a) Simple multiple choice   
There are countries in the European Union that are smaller than Luxemburg. How many? 
Please tick the right answer! Please tick just one answer!  

O Only one country is smaller than Luxemburg. 

O Two countries in the European Union are smaller than Luxemburg. 

O Four countries are smaller than Luxemburg. 

O Five countries are smaller than Luxemburg. 

b) Complex multiple choice   
What do you get to know in the text about Luxemburg? 
Decide for each row whether the statement is right or wrong! 

 right wrong 

a) In the text, there is information about the size of the 
country. O O 

b) The text reports on the history of the country. O O 

c) In the text, they inform about the currency in Luxemburg. O O 

c) Matching item   
Sort the headings to the corresponding passages in the text!  

Passages       Headings 

1. 
 

 A Luxemburg and the EU 

2. 
 

 B Location and size of Luxemburg 

3. 
 

 C Luxemburg as the financial center 

4. 
 

 D Government and inhabitants of 
Luxemburg 

   E The cuisine of Luxemburg 

d) Short-constructed response   
Calculate the area of the square above! 

Area =    cm2  
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Appendix B: ConQuest-Syntax and output for investigating the effect of 
gender on ability 
 

Syntax 

Title effect of gender on ability; 

data filename.dat; 

format responses 1-20 position 22 gender 24; /* insert number of columns with data*/ 

labels << filename_with_labels.txt; 

 

codes 0,1; 

score (0,1) (0,1)    !items (1-20); 

 

set constraint = cases; 

regression gender; 

model item + item*step + position; 

estimate; 

show !estimates=latent >> filename.shw; 

 

Output 

Regression Variable 

CONSTANT          0.000*        

Gender            -0.175 (0.032)    

----------------------------------------------- 

An asterisk next to a parameter estimate indicates that it is constrained 

=============================================== 

COVARIANCE/CORRELATION MATRIX 

Dimension 

Dimension 1            

---------------------------------- 

Variance          1.360  

---------------------------------- 
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Appendix C: ConQuest-Syntax for estimating plausible values 
 

Title Estimating Plausible Values; 

data filename.dat; 

format responses 1-20 position 22 gender 24 school 26 age 28; /* insert number of columns 
with data*/ 

labels << filename_with_labels.txt; 

 

codes 0,1; 

score (0,1) (0,1)    !items (1-20); 

 

set constraint = cases; 

regression gender school age; 

model item + position; 

estimate; 

 

show !estimates=latent >> filename.shw; 

show cases !estimates=latent >> filename.pv; 
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