

Michael Bergrab

Samples, Weights and Nonresponse

NEPS Starting Cohort 4 — Grade 9 School and Vocational Training — Educational Pathways of Students in Grade 9 and Higher

Wave 14

Research Data

Copyrighted Material Leibniz Institute for Educational Trajectories (LIfBi) Wilhelmsplatz 3, 96047 Bamberg Director: Prof. Dr. Cordula Artelt Administrative Director: Dr. Stefan Echinger Bamberg; January 11, 2024

Samples, Weights, and Nonresponse: the Sample of Starting Cohort 4 of the National Educational Panel Study (Wave 14)

Michael Bergrab

Leibniz Institute for Educational Trajectories

Technical Report referring to DOI:10.5157/NEPS:SC4:14.0.0

E-mail address:

statistik@lifbi.de

Samples, Weights, and Nonresponse: the Sample of Starting Cohort 4 of the National Educational Panel Study (Wave 14)

1 Prequel

This report complements NEPS Survey Paper No. 2 (Steinhauer & Zinn, 2016a) and gives details on wave 14 of Starting Cohort 4 (SC 4) of the National Educational Panel Study (NEPS). It refers to the Scientific Use File (SUF; DOI:10.5157/NEPS:SC4:14.0.0).¹ SC4 focuses on the educational pathways of Grade 9 students initially educated in different types of regular schools and specialneed schools. The students willing to participate in the panel study (i.e. the panel members) are followed up over time. In a typical pathway, students in Germany decide after Grade 9 and 10, respectively, to enter either the academic track or the vocational track, see figure 1. The students entering the academic track usually remain within their school context. In contrast, students entering the vocational education leave school for a vocational training. Most students enter in their educational career. Figure 1 illustrates this transition pattern.

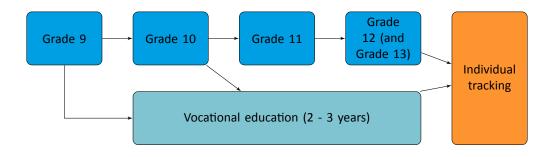


Figure 1: Ideal pathways through upper secondary and vocational education.

Table 1 complements the illustration with the number of students in the two different tracks of education in SC 4. Here, the vocational track (VOC) not only consists of students in vocational training but also includes students leaving school and entering the transition system. The numbers of students in the academic track (ACA) report students who stay in their schools together with those who left school but remain academic education. The table gives details on the size of panel cohort over time. The column "Not used" gives the number of students who have not been surveyed either by design, for example in wave 4 or wave 6, or who could not be surveyed because of insufficient contact details. For the latter group, the number increases over time, but most cases could be retracked by wave 9 and are surveyed again. The column "Used sample" is split up into "Participants", "Temporary dropouts" and "Final dropouts (in wave)" displaying the students status by the end of the wave. Finally, the last column presents the number of students withdrawing their panel consent between two rounds of survey waves including students declared as final drop-outs because of not having participated for a period of two years.

¹For general information on the NEPS, see Blossfeld et al., 2011. More detailed information is available in the documentation section on the homepage.

This report builds upon Steinhauer et al. (2015) giving details on the sample design together with the nonresponse adjustment of design weights and Steinhauer and Zinn (2016b) giving details on wave-specific nonresponse adjustment for Waves 1 to 6, Steinhauer and Zinn (2018) for Waves 7 to 9, Steinhauer (2019) for Wave 10, Bergrab (2020) for Wave 11, Bergrab (2021) for Wave 12 and Bergrab (2023) for Wave 13, respectively.

			Panel Cohort		Status at the end of the wave				
Wave (Time)	Study number		Total size		Used sample	Participants	Temporary dropout	Final dropout (in wave)	Final dropout (after wave)
1 (Fall 2010)	A46, A60, A67, A83, A86, B83	All	16425	0	16425	16106	319	0	0
2 (Summer 2011)	A47, A61, A68, A84, A87	All	16425	0	16425	15215	1210	0	61
3 (2011/2012)	A48, A62, A69, A85, A88, B37, B84	All ACA VOC	16364 - -	8 0 8	16356 13815 2541	14011 11951 2060	2234 1842 392	111 22 89	0 0 0
4 (Spring 2012)	B38, B85	All ACA VOC	16253 - -	14440 13793 647	1813 - 1813	1351 - 1351	455 - 455	7 - 7	5 3 2
5 (2012/2013)	A49, B39, B86	All ACA VOC	16241 - -	132 0 132	16109 6305 9804	12982 5768 7214	2644 522 2122	483 15 468	4 1 3
6 (Spring 2013)	B40, B87	All ACA VOC	15754 - -	9635 6289 3346	6119 - 6119	5392 - 5392	667 - 667	60 - 60	2 1 1
7 (2013/2014)	A50, B41, B88	All ACA VOC	15692 - -	185 0 185	15507 5333 10174	11830 4736 7094	3121 592 2529	556 5 551	45 26 19
8 (2014/2015)	А96, В93	All ACA VOC	15091 - -	^a 1310 0 1310	13781 688 13093	9871 610 9261	3400 75 3325	510 3 507	^b 1543 16 1527
9 (2015/2016)	B109	All	13038	0	13038	9044	3262	732	^c 1264
10 (2016/2017)	B110	All	11042	0	11042	7986	2382	674	^d 795
11 (2017/2018)	B135	All	9573	0	9573	6272	2879	422	^e 1240

Table 1: Panel progress of SC 4 by wave.									
			Panel Cohort			Status at the end of the wave			
Wave (Time)	Study number		Total size	Not used	Used sample	Participants	Temporary dropout	Final dropout (in wave)	Final dropout (after wave)
12 (2019/2020)	B136	All	7911	0	7911	4828	2840	243	^f 1325
13 (2020/2021)	B137	All	6343	0	6343	4511	1710	122	^g 945
14 (2021/2022)	B157	All	5276	0	5276	3891	1245	140	^h 31

Notes: "-" does not apply; 'n.a.': information not yet available; ^a: including 1,067 students from special-need schools not surveyed in Wave 8. ^b including 1,396 students declared as final drop-outs because of not having participated for a period of two years. ^c: including 1,246 students declared as final drop-outs because of not having participated for a period of two years. ^d: including 780 students declared as final drop-outs because of not having participated for a period of two years. ^f: including 1,319 students declared as final drop-outs because of not having participated for a period of two years. ^f: including 1319 students declared as final drop-outs because of not having participated for a period of two years. ^g: including 937 students declared as final drop-outs because of not having participated for a period of two years. ^h: including 0 students declared as final drop-outs because of not having participated for a period of two years.

2 Changes compared to previous version

Weights for Wave 14 have been appended. Note that starting with Wave 8 an AIC based backward selection is in use, adapting the initial model for estimating individual nonresponse propensities.

3 Participation in Wave 14

To account for the wave-specific participation decision of students response propensity reweighting is used to provide corresponding weights. To model binary participation decisions a model with probit link function is used and adapted with a stepwise selection. By Wave 14 the panel cohort has reduced to 5,276 students, see Table 1. All students left their schools and thus are surveyed individually.

The significant coefficients for the estimated models are displayed in Table 2. We can see that having participated in previous waves significantly influences the participation decision in Wave 14 mostly positive, except participation in Wave 6. Furthermore participating in Wave 7, 8 and 10 is missing and has no effect on the current status. In spite of previous reports no other covariates such as gender or migration background have an influence on the current status.

	Wave 14
(Intercept)	-1.527***
	(0.119)
Student participated in	-0.235***
Wave 6	(0.041)
Student participated in	0.260***
Wave 9	(0.076)
Student participated in	0.309***
Wave 11	(0.067)
Student participated in	0.628***
Wave 12	(0.062)
Student participated in	1.436***
Wave 13	(0.053)
Number of students	5,276

Table 2: Models estimating the individual participation propensity for students in Wave 14 of SC 4 used to derive adjustment factors for adjusted wave-specific cross-sectional and longitudinal weights.

Notes: Reference categories are: Students participated in Wave t. To model individual participation, the glm function with a probit link provided in R (R Core Team, 2020) was used.***, **, and * denote significance at the 0.1%, 1%, and 5% level, respectively. Standard errors are given in parentheses. AIC based backward selection was used and only significant coefficients are reported.

4 Summary of Weights

Various kinds of weights for students together with design information are provided. Table 3 summarizes the design information and the different weights provided by SUF release version DOI:10.5157/NEPS:SC4:14.0.0.

Besides individual/target (ID_t) and institutional (ID_i) identifiers, design information for the entire cohort is made available.² This information covers the study number corresponding to the first survey in which a student had been surveyed, the explicit sampling strata (stratum_exp) as well as the implicit sampling strata. Variables used for implicit stratification are "Federal State" (stratum_imp1), "regional classification" (stratum_imp2) and "funding institution" (stratum_imp3).³ With release version 10.0.0 additional information has been added to the design data, namely the total number of students (h227102_d) and classes (h229021_d) in grade 9 in school year 2010/2011 as reported by official statistics.

Nonresponse adjusted design weights on the institutional (w_i) and the individual (w_t) level are given for the entire cohort.⁴ For all participants in a particular wave, cross-sectional weights are provided. With respect to panel progress longitudinal weights are also available. With version 10.0.0 cross-sectional and longitudinal weights are now based on the calibrated weight w_t_cal. Thus, corresponding cross-sectional and longitudinal weights are also calibrated to the population in Grade 9 in school year 2010/2011. The general overview of variables contained in the weighting data set can be found in Table 3. It is accompanied by summarizing statistics of all weights provided, see Table 4.

Variable	Applies to	Content
Identifier		
ID_t	16,425	Identifier for target person (students)
ID_i	16,425	Identifier for the institution (648 schools)
Design informa	rtion	
tstud_st	16,425	Study number the target person was first surveyed in (A46, A60, A67, A83, A86)
stratum_exp	16,425	Explicit sampling stratum referring to the school (school type according to sampling frame)
stratum_imp1	16,425	Implicit sampling stratum (Federal State the school is located in according to sampling frame)
stratum_imp2	16,425	Implicit sampling stratum (regional classification according to sampling frame)
stratum_imp3	16,425	Implicit sampling stratum (funding according to sampling frame)

²Due to data protection, this information is not available in the download version of the SUF.

³In the SUF, these design variables are named differently, because of an error in data preperation. Here, variables stratum_exp, stratum_imp1, stratum_imp2 and stratum_imp3 are namend stratum_imp1, stratum_imp4.

⁴The institutional weight as well as the explicit and implicit stratification variables belong to the institution and thus are equal for all cases within the institution.

Variable	Applies to	Content
Identifier		
h227102_d	16,425	Number of students in grade 9 as reported by official statistics
h229021_d	16,425	Number of classes in grade 9 as reported by official statistics
Design weight	ts adjusted for	initial nonresponse
w_i	16,425	Weight for institution
w_t	16,425	Weight for target
w_t_cal	16,425	Weight for target, calibrated
Weights adjus	ted for wave-s	specific nonresponse, standardized
w_t1	16,106	Cross-sectional weight for targets participating in Wave 1
w_t2	15,215	Cross-sectional weight for targets participating in Wave 2
w_t3	14,011	Cross-sectional weight for targets participating in Wave 3
w_t4	1,351	Cross-sectional weight for targets participating in Wave 4
w_t5	12,982	Cross-sectional weight for targets participating in Wave 5
w_t6	5,392	Cross-sectional weight for targets participating in Wave 6
w_t7	11,830	Cross-sectional weight for targets participating in Wave 7
w_t8	9,871	Cross-sectional weight for targets participating in Wave 8
w_t9	9,044	Cross-sectional weight for targets participating in Wave 9
w_t10	7,986	Cross-sectional weight for targets participating in Wave 10
w_t11	6,272	Cross-sectional weight for targets participating in Wave 11
w_t12	4,828	Cross-sectional weight for targets participating in Wave 12
w_t13	4,511	Cross-sectional weight for targets participating in Wave 13
w_t14	3,891	Cross-sectional weight for targets participating in Wave 14
w_t1to2	15,056	Longitudinal weight for targets participating in Wave 1 to 2
w_t1to3	13,188	Longitudinal weight for targets participating in Wave 1 to 3
w_t1to4	1,226	Longitudinal weight for targets participating in Wave 1 to 4
w_t1to6	4,677	Longitudinal weight for targets participating in Wave 1 to 6
w_t1to7	9,463	Longitudinal weight for targets participating in Wave 1 to 7
w_t1to8	7,425	Longitudinal weight for targets participating in Wave 1 to 8
w_t1to9	5,962	Longitudinal weight for targets participating in Wave 1 to 9
w_t1to10	4,896	Longitudinal weight for targets participating in Wave 1 to 10
w_t1to11	3,674	Longitudinal weight for targets participating in Wave 1 to 11
w_t1to12	2,808	Longitudinal weight for targets participating in Wave 1 to 12
w_t1to13	2,402	Longitudinal weight for targets participating in Wave 1 to 13
w_t1to14	2,021	Longitudinal weight for targets participating in Wave 1 to 14

Table 3: Variables included in the weighting data set for SC4 SUF version 14.0.0. (continued)

Table 4: Summary statistics for all weights provided.								
Label of weights	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA.s	
w_i	1.7195	14.2587	18.1477	19.3806	24.2512	100.0490	NA	
w_t	1.8604	32.9759	44.2869	49.0495	56.1641	2950.4497	NA	
w_t_cal	2.4428	32.6194	44.5160	50.4371	58.2075	2004.5527	NA	
w_t1	0.0520	0.6761	0.9175	1.0000	1.2004	2.8581	319	
w_t2	0.0530	0.6832	0.9058	1.0000	1.1864	2.9054	1210	
w_t3	0.0377	0.4791	0.6329	1.0000	0.9487	4.7910	2414	
w_t4	0.0260	0.2348	0.3334	1.0000	0.6360	5.6621	15074	
w_t5	0.0262	0.2673	0.4312	1.0000	0.9004	5.3847	3443	
w_t6	0.0308	0.4016	0.5525	1.0000	0.8544	5.1605	11033	
w_t7	0.0105	0.0487	0.3787	1.0000	1.0170	5.5809	4595	
w_t8	0.0103	0.0539	0.3508	1.0000	0.9474	5.6280	6554	
w_t9	0.0081	0.0559	0.3018	1.0000	0.8625	5.6819	7381	
w_t10	0.0059	0.0480	0.2422	1.0000	0.8373	5.7270	8439	
w_t11	0.0051	0.0399	0.2158	1.0000	0.8744	5.7435	10153	
w_t12	0.0048	0.0321	0.1887	1.0000	0.8447	5.7861	11597	
w_t13	0.0039	0.0321	0.1708	1.0000	0.8728	5.7863	11914	
w_t14	0.0034	0.0260	0.1581	1.0000	0.9291	5.7862	12534	
w_t1to2	0.0537	0.6898	0.9145	1.0000	1.1947	2.8282	1369	
w_t1to3	0.0494	0.6176	0.8046	1.0000	1.1216	3.4409	3237	
w_t1to4	0.0409	0.3551	0.4994	1.0000	0.7734	5.4248	15199	
w_t1to5	0.0435	0.4215	0.6049	1.0000	1.1094	4.5934	5388	
w_t1to6	0.0323	0.4065	0.6330	1.0000	1.0207	4.7682	11748	
w_t1to7	0.0183	0.0716	0.5189	1.0000	1.2570	5.3247	6962	
w_t1to8	0.0173	0.0715	0.4982	1.0000	1.2147	5.3715	9000	
w_t1to9	0.0180	0.0739	0.5013	1.0000	1.2208	5.3732	10463	
w_t1to10	0.0178	0.0718	0.4759	1.0000	1.2024	5.4095	11529	
w_t1to11	0.0186	0.0700	0.4432	1.0000	1.1799	5.4847	12751	
w_t1to12	0.0199	0.0687	0.4229	1.0000	1.1898	5.4805	13617	
w_t1to13	0.0200	0.0680	0.3906	1.0000	1.1847	5.5069	14023	
w_t1to14	0.0203	0.0680	0.2938	1.0000	1.1879	5.5343	14404	

Table 4: Summary statistics for all weights provided.

For further information on weighting please contact statistik@lifbi.de.

Acknowledgements

This paper uses data from the National Educational Panel Study (NEPS; see Blossfeld and Roßbach, 2019). The NEPS is carried out by the Leibniz Institute for Educational Trajectories (LIfBi, Germany) in cooperation with a nationwide network.

- Bergrab, M. (2020). Samples, Weights, and Nonresponse: the Sample of Starting Cohort 4 of the National Educational Panel Study (Wave 11). Leibniz Institute for Educational Trajectories, National Educational Panel Study. Bamberg. https://www.neps-data.de/Portals/0/NEPS/ Datenzentrum/Forschungsdaten/SC4/11-0-0/SC4_11-0-0_W.pdf
- Bergrab, M. (2021). Samples, Weights, and Nonresponse: the Sample of Starting Cohort 4 of the National Educational Panel Study (Wave 12). Leibniz Institute for Educational Trajectories, National Educational Panel Study. Bamberg. https://www.neps-data.de/Portals/0/NEPS/ Datenzentrum/Forschungsdaten/SC4/12-0-0/SC4_12-0-0_W.pdf
- Bergrab, M. (2023). Samples, Weights, and Nonresponse: the Sample of Starting Cohort 4 of the National Educational Panel Study (Wave 13). Leibniz Institute for Educational Trajectories, National Educational Panel Study. Bamberg. https://www.neps-data.de/Portals/0/NEPS/ Datenzentrum/Forschungsdaten/SC4/13-0-0/SC4_13-0-0_W.pdf
- Blossfeld, H.-P., & Roßbach, H. G. (Eds.). (2019). Education as a lifelong process: The German National Educational Panel Study (NEPS). Edition ZfE (2nd). Springer VS.
- Blossfeld, H.-P., Roßbach, H. G., & von Maurice, J. (Eds.). (2011). Education as a lifelong process: The German National Educational Panel Study (NEPS) [Special Issue]: Zeitschrift für Erziehungswissenschaft (Vol. 14). VS Verlag für Sozialwissenschaften.
- R Core Team. (2020). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/
- Steinhauer, H. W. (2019). Samples, Weights, and Nonresponse: the Sample of Starting Cohort 4 of the National Educational Panel Study (Wave 10). Leibniz Institute for Educational Trajectories, National Educational Panel Study. Bamberg. https://www.neps-data.de/Portals/ 0/NEPS/Datenzentrum/Forschungsdaten/SC4/10-0-0/SC4_10-0-0_W.pdf
- Steinhauer, H. W., Aßmann, C., Zinn, S., Goßmann, S., & Rässler, S. (2015). Sampling and Weighting Cohort Samples in Institutional Contexts. AStA Wirtschafts- und Sozialstatistisches Archiv, 9(2), 131–157. https://doi.org/10.1007/s11943-015-0162-0
- Steinhauer, H. W., & Zinn, S. (2016a). NEPS Technical Report for Weighting: Weighting the Sample of Starting Cohort 3 of the National Educational Panel Study (Waves 1 to 3) (Working

Paper No. 63). Leibniz Institute for Educational Trajectories. Bamberg. https://www.nepsdata.de/Portals/0/Working%20Papers/WP_LXIII.pdf

- Steinhauer, H. W., & Zinn, S. (2016b). NEPS Technical Report for Weighting: Weighting the sample of Starting Cohort 4 of the National Educational Panel Study (Wave 1 to 6) (NEPS Survey Paper No. 2). Leibniz Institute for Educational Trajectories, National Educational Panel Study. Bamberg. https://www.neps-data.de/Portals/0/Working%20Papers/WP_LXIII.pdf
- Steinhauer, H. W., & Zinn, S. (2018). NEPS Technical Report for Weighting: Weighting the sample of Starting Cohort 4 of the National Educational Panel Study (Wave 7 to 9). Leibniz Institute for Educational Trajectories, National Educational Panel Study. Bamberg. https://www.neps-data.de/Portals/0/NEPS/Datenzentrum/Forschungsdaten/SC4/9-0-0/SC4_9-0-0_W.pdf