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Rohwer & Blossfeld

Contextual and Random Coefficient Multilevel Models. A Comparison

Abstract

We discuss multilevel models focusing on individuals belonging to institutional units. It is as-
sumed that the individual members of the institutional units cannot be identified by referring to
structural positions. Modeling therefore requires analytical models relating to generic individ-
uals. In this framework, we compare models using contextual variables and random coefficient
multilevel models. We argue that random coefficient models do not offer advantages when the
goal is to explain individual outcomes.
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multilevel model, contextual multilevel model, random coefficient multilevel model

NEPS Working Paper No. 6, 2012 Page 2



Rohwer & Blossfeld

1. Introduction

Multilevel models exist in different forms and are used for different applications. In this paper, we
are interested in models for human individuals that take into account that individual outcomes
are influenced by institutional units the individuals belong to. So there are two levels, individuals
and institutional units. We consider mainly two modeling approaches: individual-focused models
including contextual variables (derived from the institutional units), and random-coefficient
multilevel (RCML) models.

The conceptualization of RCML models is often based on the assumption that the individual
units associated with a higher-level unit can be identified through structural positions. This
is reasonable, for example, when dealing with repeated measurements that can be identified
by time points (serial numbers) which are then used as structural positions. The assumption
is crucial because it is required for thinking of a joint distribution of the outcome variables of
individuals belonging to the same higher-level unit. We therefore stress that in the applications
we have in mind this assumption cannot be made.

Our approach is based on the notion of analytical models aiming to predict and, via inter-
pretation, explain individual outcomes for generic individuals (meaning individuals defined by
values of variables). Such models can easily include contextual variables and will then be called
contextual multilevel models. The paper argues that RCML models do not offer advantages
when the goal is to explain individual outcomes. Actually, much of the discussion of RCML
models in the literature concerns the modeling of institutional units.1 This is outside the scope
of the present paper. Our argumentation concerns the conceptual set-up of multilevel models
for individual outcomes. Except for some brief remarks dealing with supposed implications of
‘dependencies among observations,’ questions concerning the estimation of model parameters
will not be discussed.

2. Descriptive and Analytical Models

We distinguish between descriptive and analytical models. Descriptive models serve to describe a
given set of data or a population. Such models describe (aspects of) a statistical distribution that
is defined for a sample or a population.2 For example, given data containing information about
household incomes, one can fit a lognormal distribution to describe the income distribution.
This would be a descriptive model in the sense that it is a model intending to describe the
income distribution in the sample. One also could refer to a population of households and
set up a model that uses a lognormal distribution for describing the income distribution in
the population. Sampled data might then be used to estimate this descriptive model for the
population.

In contrast to descriptive models, analytical models do not serve to describe data (or a popu-
lation) but to formulate hypotheses which concern dependence relations between variables. For
example, the question motivating the research might be how the educational success of chil-
dren depends on conditions characterizing their family background. This question cannot be
answered by a descriptive model but requires an analytical model that formulates a hypothesis
about a dependence relation. Moreover, in most applications, the hypothesis does not concern a

1For example, most of the research questions referred to by Raudenbush and Bryk (2002) to illustrate their
approach to RCML models concern statistically constructed properties of institutional units (e.g. ‘school effec-
tiveness’).
2The term ‘population’ is here used to denote a finite set of units which actually exist or have existed in the
past. This understanding is required, in particular, in order to think of data as being a sample that is randomly
drawn from a population.
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particular child (or group of children) but a generic child, that is, any child that can be imagined
to exemplify the theoretically posited process.

Analytical models are often formulated as regression models. A simple linear model could be
written as

y = α+ xβ + e (1)

Understood as an analytical model, the equation formulates a hypothesis about the dependence
of values of a variable y on values of a variable x. To account for the fact that, based on values
of x, values of y can be predicted only probabilistically, the model includes a random variable
e. Being part of an analytical model, this random variable represents the uncertainty in the
prediction of y when using this model. Of course, one can assume E(e) = 0, and this allows
one to consider (1) as a hypothesis about the dependence of expected values of y on values of
x: E(y|x) = α+ xβ.

Regression models can be, and often are, used for descriptive purposes. For example, having
sampled values of the variables x and y for n individuals, say (x∗i , y

∗

i ) for i = 1, . . . , n,3 one can
set up a regression model

y∗i = α+ x∗i β + ei (2)

This would be a descriptive model that describes an aspect of the joint distribution of the
variables found in the data. Being part of a descriptive model, ei is not a stochastic variable
but represents a residual from fitting the model. In fact, values of ei can only be defined by
using some method of estimating the parameters of the model; only then, having determined
estimates α̂ and β̂, one can define: e∗i := y∗i − α̂− x∗i β̂.

3. Varieties of Multilevel Models

Following the remarks in Section 2, we distinguish between descriptive and analytical multi-
level models. We propose to understand analytical multilevel models as models formulating
hypotheses about dependence relations that involve two or more different kinds of units.

For the present discussion, we distinguish four kinds of units: Individuals; in this paper these
are always human individuals. Institutional units; for example: households, firms, schools.
Structured units; these are groups (sets) of two or more individuals whose members can be
identified by positions. For example, a couple consisting of a man and a woman. Statistical

units; these are collections (sets) of individuals delimited by a common property. In contrast to
structured units, members of a statistical unit cannot be distinguished by structurally defined
positions (only by additional variables). As an example one can think of occupational groups,
considered as sets of people having the same occupation.

The distinction between institutional and statistical units is important because, referring to an
institutional unit, one can often think of a group of individuals being in some sense associated
with the institutional unit. For example, the group of members of a household, or the group of
employees of a firm. If considered as units of analysis, these groups of individuals are statistical
units and must be distinguished from the institutional units referred to in their definition.

Based on the above definitions of kinds of units, we distinguish the following kinds of models:

a) Multilevel models for individuals. These are models having a dependent variable that
refers to an individual and take into account that the process that generates values of that

3To distinguish values from variables, they are referred to by starred letters.
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variable is influenced by the individual’s being a member of, or in some way associated
with, an institutional unit.

b) Models for institutional units. These are models having a dependent variable that refers to
an institutional unit and take into account that the process that generates values of that
variable is influenced by individuals (being in some way associated with the institutional
unit). For example, one can think of a model that tries to explain the mean value (or some
other aspect of the distribution) of wages paid by firms.

c) Models for structured units. These are models having a multidimensional dependent vari-
able, say (y1, . . . , yn), where the components relate to the individual members of a struc-
tured unit. For example, when the unit is a couple, one can define a variable (y1, y2) where
y1 relates to the man and y2 relates to the woman. (Allowing the notion of structured units
to refer to any kind of objects, one can also think of models for repeated measurements
where time points can be used as positions identifying individual measurements.)

d) Models for statistical units. Since the individual members of a statistical unit cannot be
identified, dependent variables cannot refer to identifiable individuals. Instead, depen-
dent and explanatory variables refer to statistical distributions defined for the statistical
unit; models can therefore properly be called population-level models.4 As examples one
can think of diffusion models concerning the spread of some property in a population of
individuals.

The present paper focuses on analytical multilevel models for individuals. The models that will
be discussed concern a dependent variable that is defined for a generic individual which belongs
in some way to an institutional unit. References to institutional units can be made in one of two
ways: a model can refer to a generic institutional unit or to a fixed collection of institutional
units.

4. Variance Partitions and Explanations

Discussions of multilevel models often start from a hierarchical data set. For example, a hierar-
chical data set containing values of two variables, y and x, for i = 1, . . . , n individuals could be
given as follows:

(y∗i , x
∗

i , l
∗

i ) (3)

In this notation, l∗i provides the label of the institutional unit the individual i belongs to (say, l
∗

i ∈
{1, . . . ,m}). We assume that y is the variable of interest, and x is a (possibly multidimensional)
explanatory variable. In a formal sense, also the labels l∗i can be considered as values of a
variable, say l. There is, however, an important difference between x and l: in contrast to values
of x, values of l cannot contribute to an explanation of values of y.

Think of an individual i having the value y∗i . Why? Referring to the value x∗i could, possibly,
contribute to an answer; but the label, l∗i , of an institutional unit (say, a school) the individual
belongs to has no explanatory content. Of course, something that characterizes the institutional
unit (e.g., class size) might contribute to the explanation of y∗i . This information, however, does
not derive from the label, but from knowing the value of an explanatory variable (that could be
identical for several institutional units).

While labels cannot contribute to explanations, they can be used to partition the variance of a
variable of interest, say V(y), into two components: a mean value of variances that are specific for

4A framework for the conceptualization of such models is discussed in Rohwer (2010).
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each institutional unit (label), and the variance of the mean values. Such variance partitions are
often made the starting point for introducing multilevel models. In fact, several authors suggest
that the main task of multilevel analyses is to contribute to an explanation of ‘variability’ (in a
variable of interest) through methods of variance partition (e.g., Snijders and Bosker 1999, p. 1;
Healy 2001; Browne et al. 2005; Stanat and Lüdtke 2008, p. 325; Heck and Thomas 2009, pp. 11,
51). This approach could be helpful when the goal is prediction. For example, knowing the
conditional mean values M(y|l = j), the label l∗i could be used for the prediction of i’s value
of y. However, in our view, variance partitions w.r.t. institutional units cannot contribute to
explanations.

Being interested in explanations requires an approach that is conceptually different from parti-
tions of variance. One has to start from an analytical model that refers to a generic individual.
This entails that the meaning of ‘variability,’ when referring to the dependent variable of an
analytical model, cannot be defined by referring to a sample (or population) of individuals.
Considering the dependent variable of an analytical model as a random variable, its variance de-
rives from the ‘error term,’ that is, a random variable representing the uncertainty of predicting
values of the dependent variable.

5. Contextual Variables

Having defined the dependent variable to be considered in an analytical model to be used for
explanations, the next step is to think of processes that can generate values of the variable. The
basic idea of multilevel models (as conceptualized in this paper) is that the process generating
an individual’s value of a dependent variable also depends in some way on the institutional unit
to which the individual belongs. There are two complementary possibilities:

a) One can think of features of the institutional unit that could be causally relevant conditions
for processes generating values of the dependent variable. For example, one could assume
that processes generating an individual’s abilities in reading depend on features of the
school in which the learning takes place, e.g., properties of the curriculum, qualification of
the teachers, class size.

b) One can often assume that an individual is influenced by some or all other persons belong-
ing to the same institutional unit. In this example, one could assume that the individual’s
learning also depends on his or her interactions with other persons in the school.

Variables representing such circumstances (a or b or both) will be called contextual variables

if they are used to refer to conditions for a process that generates an individual’s value of a
dependent variable. In this understanding, contextual variables characterize individuals situated
in a context. What makes these variables specific is that their definition (that is, the definition
of possible values and their meanings) requires reference to an institutional unit.

Processes generating an individual’s value of a variable must be distinguished from selection
processes. For example, the educational level of a child’s parents may be assumed to be one of
the conditions for the process through which the child acquires its reading capabilities. Now
imagine that the school selects children according to the educational level of their parents.
Obviously, the selection process is conceptually different from the process through which the
child learns reading. On the other hand, it might well be possible to consider the selection
process as a process that generates some feature of the institutional unit (the school) which, in
turn, constitutes a causal condition for the child’s learning process.5

5The consideration of selection effects becomes of critical importance when setting up models for institutional
units. This is outside the scope of the present paper.
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6. Models with Contextual Variables

A linear version of an analytical multilevel model that uses contextual variables can be written
as follows:

y = α+ xβ + z γ + x z δ + e (4)

z is a contextual variable, x records characteristics of the individual that do not require reference
to an institutional unit (both are possibly multidimensional variables); in addition, there is a
random variable e having expectation E(e) = 0.

Notice that there is no formal distinction between contextual and other explanatory variables.
The formulation in (4) is completely symmetrical with respect to x and z. This is not surprising,
of course, because this modeling approach uses contextual variables, like any other variables, to
characterize conditions for a process that generates an individual outcome. These models will
be called contextual multilevel models.

Understanding (4) as an analytical model means that it is intended to predict values of the
dependent variable for a generic individual. Accordingly, the random term is understood as
representing the uncertainty in making such predictions. The prediction is made by using the
conditional expectation of y and possibly adding some assessment of the uncertainty. The model
that is used for predictions may be written as

E(y|x, z) = α+ xβ + z γ + x z δ (5)

showing how it predicts the expectation of y depending on values of x and z. Of course, in order
to actually use the model for predictions one needs values of its parameters.

As formulated in (4), the model assumes that the random variable e representing the uncertainty
is independent of the explanatory variables x and z. Note that this is an assumed feature of
the model, not of a (hierarchical) data set; in particular, this feature has nothing to do with
properties of a sampling scheme that might be used to generate data for the estimation of model
parameters.

It is quite possible to set up a model where the uncertainty of prediction depends on variables. A
simple approach assumes a parametric density function for the dependent variable. For example,
one could use a normal density function φ(y;µ, σ), where µ is the mean and σ is the standard
deviation. If µ is made dependent on covariates, e.g. in the linear form assumed in (5), but σ is
treated as a single parameter, the model would again imply that the variance of the uncertainty
is independent of covariates. On the other hand, it is quite possible to make also σ dependent on
variables. As a result one would get a model where the variance of the distribution representing
the uncertainty is no longer independent of explanatory variables. Instead of OLS, one could
then use the maximum likelihood method to find estimates of the model parameters.

7. Models with Labels of Institutional Units

Analytical models with contextual variables concern a generic individual, that is, an individual
which is only characterized by values of variables. For example, a child of age eight that attends
a school where it is learning reading. Moreover, also the institutional unit is referenced in a
generic way. The model only takes into account values of contextual variables which do not
identify particular institutional units.

We now consider an approach to multilevel modeling that starts from assuming a collection of
identifiable institutional units. For example, a collection of identifiable schools, or a collection
of countries (e.g., the countries of the European Union). In order to refer to a collection of
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institutional units, we use the notation Ω = {ω1, . . . , ωm}, m being the number of units.

This presupposition allows one to define (at least conceptually) a separate model for each insti-
tutional unit:

y = αj + xβj + ej (j = 1, . . . ,m) (6)

Note that these models refer to identifiable institutional units but, nonetheless, can be inter-
preted as analytical models. Given the label j of an institutional unit, the model concerns a
generic individual supposed to belong to that unit. By using dummy variables (say dj = 1 if an
individual belongs to ωj, and dj = 0 otherwise), one can also formulate a single model, often
called a fixed-effects multilevel model . For example,

y = Σj djαj + xΣjdj βj +Σjdjej (7)

would be equivalent to the full set of m separate models; by adding constraints one could define
more restricted models.

A fixed-effects multilevel model can be understood as an analytical model that uses labels of
institutional units as additional information for predicting values of a dependent variable defined
for a generic individual. Alternatively, the model can be understood as a descriptive model
aiming at the description of a collection of institutional units without explicitly referring to a
collection of individuals. The description concerns properties of the institutional units defined
by the regression models in (6) and therefore depends on the specification of these models. As
mentioned, these are analytical models, they do not describe sets of individuals belonging to the
institutional units.

A further question concerns how to interpret differences between the m models. This mainly
depends on whether the labels of the institutional units are informative or not. In some appli-
cations, it could be sensible to use informative labels; for example, when comparing countries.
However, in many applications the number of institutional units is large and labels are not
informative (think, e.g., of households, schools, and firms). Differences between the institu-
tional units are then difficult to interpret. Since the labels are not informative, they cannot
suggest ideas about variables which could have contributed to generating the differences. It is
not even possible to conclude that the differences are due to unobserved contextual variables;
at least some part may well be due to variables omitted from the model (6) that is used for the
comparisons.

8. Random Coefficient Multilevel Models

In contrast to the modeling approach discussed in the previous section, random coefficient mul-
tilevel models do not use labels of institutional units as values of variables. Setting up this
kind of multilevel model proceeds in three steps. The first step specifies a model for a generic
individual. Using previous notations, this level-1 model could be written as

y = α0 + xβ0 + e0 (8)

Assuming then that the processes generating values of y take place in the context of an institu-
tional unit, the second step consists in specifying a level-2 model that makes the parameters of
(8) dependent on properties that characterize the institutional unit. In our example, this model
consists of two parts corresponding to the two parameters of (8) and could be specified as

α0 = α+ z γ + eα and β0 = β + z δ + eβ (9)
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where z is a variable characterizing an institutional unit, and it is assumed that E(eα) = E(eβ) =
0. The third step consists of combining (8) and (9), resulting in the model

y = α+ xβ + z γ + x z δ + (eα + x eβ + e0) (10)

This is called a random coefficient multilevel (RCML) model . Different from models discussed in
the previous section, labels of institutional units do not occur. In fact, except for the formulation
of the stochastic part, this model has the same structure as (4).

There is, however, also a conceptual difference. This becomes visible when asking how to
understand the random variables, eα and eβ, in the level-2 model. Our understanding of these
random variables is based on the following interpretation of the modeling approach:6 It is
intended to predict the value of y for a generic individual. It is known (or assumed) that
the process generating that value depends on features of the institutional unit the individual
belongs to, say ωj∗ (a member of Ω). This allows the further assumption that there is a model
corresponding to (8), say

y = αj∗ + xβj∗ + ej∗ (11)

that, if possible, should be used for the prediction. This is not possible, however, because the
parameters, αj∗ and βj∗ , assumed for the particular institutional unit the individual belongs to
are not known (one does not know to which institutional unit the individual belongs). Never-
theless, one can think of the level-2 model as providing estimates of the unknown parameters
αj∗ and βj∗ .

Based on this interpretation, one can understand the random variables that are used in the
formulation of the level-2 model as representing the uncertainty in the prediction of level-1
model parameters assumed to exist for the particular (but unknown) institutional unit a generic
individual belongs to. This interpretation also highlights the conceptual difference between the
modeling approaches:

a) The contextual multilevel model (4) assumes that the process generating an individual’s
value of y depends on conditions which can be represented by contextual variables, leaving
it open whether and how the process might depend on further properties of the institutional
unit the individual belongs to.

b) The RCML model (10), like a model using labels, assumes that the process generating an
individual’s value of y depends on the particular institutional unit the individual belongs
to,7 and it uses contextual variables, or any other variables characterizing institutional
units, to estimate model parameters assumed for that unit.

Note that the proposed interpretation of the random variables in the level-2 model is not in
terms of sampling from a population of institutional units. Thinking in terms of sampling is
sometimes proposed in the literature (e.g., Goldstein 2003, p. 15; Healy 2001), but would not
be compatible with using RCML models as analytical models relating to generic individuals.8

6This interpretation is suggested, e.g., by DiPrete and Forristal 1994, p. 336; Hox 2000, p. 16; Heck and Thomas
2009, p. 78.
7For example, Raudenbush and Willms (1995, p. 308) define a ‘school effect’ as “the extent to which attending
a particular school modifies a student’s outcome.” The contextual model would ask, instead, how a student’s
outcome depends on variables characterizing a school.
8Thinking in terms of sampling from a population of institutional units could be justified with being interested
in the distribution of parameters of level-1 models in that population. However, RCML models presuppose
parametric forms of the distributions of the level-2 random variables, and consequently cannot be used to learn
something about the form of the distribution of parameters in the population of institutional units.
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Neither would it make sense, then, to start from a randomly drawn institutional unit, nor would
it be reasonable to start from a generic individual which is then placed into a randomly drawn
institutional unit. An interpretation in terms of sampling would also be in contradiction to
applications where model estimation is based on information about all of a small number of
institutional units.9

9. Comparing the Modeling Approaches

Leaving aside the conceptual difference, the contextual multilevel model (4) and the RCML
model (10) are very similar. In fact, except for different formulations of the stochastic parts,
they are formally identical. An important common feature is that both models do not use
labels of institutional units. This implies that all substantive interpretations must be based on
explicitly defined explanatory variables.

It is sometimes said that the RCML model allows formulating the hypothesis that the parameters
of an individual-level model like (8) may vary between institutional units. The same assumption
is implied in the contextual multilevel model (4). In fact, referring to an institutional unit
characterized by a value z∗, both models imply the same individual-level model:

y = (α+ z∗γ) + x (β + z∗δ) + e0 (12)

Starting from (4), e0 is conceptually identical with e. On the other hand, following the RCML
approach, one first uses (9) to predict α0 = α + z∗γ and β0 = β + z∗δ, and then inserts these
values into (8).

An argument often given to suggest RCML models is that these models can be used to show how
relationships between individual-level variables depend on the institutional context (e.g., Blien,
Wiedenbeck, and Arminger 1994, p. 270; Goldstein 2003, p. 15; Raudenbush and Bryk 2002, p. 8).
Mason, Wong, and Entwisle (1984, pp. 74-75) gave the following formulation:

Our fundamental assumption is that the micro values of the response variable in
some way depend on context and that the effects of the micro determinants may

vary systematically as a function of context.

Referring to the RCML model (10), the interest concerns how the relationship between the
conditional expectation E(y|x, z) and x depends on z. Again, both the RCML model and the
contextual multilevel model (4) give the same answer:

∂E(y|x, z)/∂x = β + zδ (13)

The fact that both models give the same answer is a consequence of referring to institutional
units not by labels, but only by explanatory variables. This implies that we do not distinguish
between institutional units having identical values of the variable z.

10. Level-1 and Level-2 Variables

One often finds the suggestion that RCML models can be used to assess the relative importance of
factors attributable to individuals and factors attributable to institutional units (e.g., Teachman
and Crowder 2002; Heck and Thomas 2009, p. 14). The basic idea is that these models allow
interpreting level-1 variables (defined by being included in the level-1 model) as representing

9Such applications are widespread in comparative political research; see, e.g., Dallinger 2008; Pichler and Wallace
2009.

NEPS Working Paper No. 6, 2012 Page 10



Rohwer & Blossfeld

factors attributable to an individual and level-2 variables (defined by being included in the
level-2 model) as representing factors attributable to an institutional unit.

In our view, there are several reasons why this distinction between variables should not be used
for substantive (causal) conclusions. The first point to note is that the distinction between
level-1 and level-2 variables only reflects the stepwise procedure of setting up the model without
having a substantive meaning. In fact, in the combined model (10), there is no longer any
distinction between level-1 and level-2 variables.

Furthermore, there is no correspondence with the distinction between contextual variables and
variables that can be defined without reference to an institutional unit. Contextual variables
could be used in the level-1 model; on the other hand, it is not required that level-2 variables can
be interpreted as contextual variables. Following the interpretation of RCML models proposed
in Section 8, one can use any variables that might help to estimate parameters postulated for
the institutional unit an individual belongs to. It is not required that the variable is in any sense
a causal condition for a process that generates values of the dependent variable.

A further point concerns the random variables included in the level-2 model. By definition,
these are level-2 variables and (therefore) often interpreted as representing unobserved influences
attributable to an institutional unit (e.g., Kreft and de Leeuw 1998, p. 43; Snijders and Bosker
1999, p. 47). Correspondingly, the random variable included in the level-1 model is interpreted
as representing influences attributable to the individual. Based on these interpretations, it is
proposed that the variances of the random variables can be used to assess the relative importance
of unobserved level-1 and level-2 variables (e.g., DiPrete and Forristal 1994, p. 338; Rice et al.
1998; Dallinger 2008; Heck and Thomas 2009, pp. 83, 88-9; Kim, Solomon and Zurlo 2009, p. 270).

An obvious objection derives from the fact that the level-2 model is based on having previously
defined a level-1 model. All parameters of the level-2 model, including the variances of the
random variables, depend on the specification of the level-1 model. Adding further level-1
variables will change these parameters and, in particular, can well lead to a decrease in the
variances of the level-2 random variables. This shows that, even if accepting the meaningfulness
of the distinction between level-1 and level-2 variables, no reliable conclusions can be drawn
from the variance components in the stochastic part of the model.

The most important point, in our view, is that statements concerning the contribution of different
kinds of variables should be based on explicitly defined variables (in contrast to interpreting
variance components in terms of ‘unobserved variables’). This can well be done with models
incorporating contextual variables. Such models also show that it is not, in general, possible to
think of separable influences to be associated with different kinds of variables.

To illustrate, we use model (4) (using instead the RCML model (10), one would be led to the
same conclusions). Assume two individuals having, respectively, values x∗

1
and x∗

2
of the variable

x, and values z∗
1
and z∗

2
of the variable z. The model then predicts the following difference in

the expected values of the dependent variable:

E(y|x∗1, z
∗

1)− E(y|x∗2, z
∗

2) = (14)

(x∗1 − x∗2)β + (z∗1 − z∗2) γ + (x∗1z
∗

1 − x∗2z
∗

2) δ

Due to the interaction effect, it is not possible to think of this difference as resulting from two
independent sources (one attributable to the individuals and another one attributable to the
institutional units). Even when comparing two individuals belonging to the same institutional
unit (z∗

1
= z∗

2
= z∗), this would not be possible. One would get the equation

E(y|x∗1, z
∗)− E(y|x∗2, z

∗) = (x∗1 − x∗2) (β + z∗ δ) (15)

showing how the difference between the expectations of the individual scores still depends on
the institutional context.
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11. How to Formulate Models?

We have argued that one should clearly distinguish between descriptive and analytical models.
Unfortunately, confusion easily results from the widespread habit of writing multilevel models
in terms of variables referring to a sample of individuals; for example,

yij = α+ xijβ + eij (i = 1, . . . , nj; j = 1, . . . ,m) (16)

where i and j refer, respectively, to individuals and to institutional units. The notation could
be useful for descriptive models, that is, when xij and yij are meant to represent data, implying
that also eij represents a fixed quantity (which must be defined by an estimation procedure for
the parameters α and β). However, confusion is likely to occur when the notation is intended
to set up a model that assumes eij , and consequently yij, to represent random variables. The
notation then seems to allow thinking about a joint distribution of the variables eij , making it
possible to formulate assumptions about correlations among its components. However, it is in
no sense clear how to understand this joint distribution.

In contrast to an analytical model expressing a hypothesis about a generic individual, the for-
mulation (16) refers, for each label j, to a plurality of individuals (i = 1, . . . , nj). In some
applications, these individuals can be considered as members of a structured unit, and this
would then allow thinking of corresponding variables having a joint distribution (in fact, this
would lead to an analytical model for structured units). However, in most applications the
institutional units referred to in multilevel models cannot be considered as structured units.
The index i cannot be used, then, to distinguish generic variables, and (16) does not specify an
analytical model.

We are led to the conclusion that, when using analytical models for generic individuals (in
contrast to models for structured units), there is no sound foundation for thinking in terms of
variables having subscripts referring to individuals. Furthermore, using subscripts referring to
institutional units could be sensible, but implies treating these subscripts as labels of identifiable
units. In any case, there is no valid notion of a joint distribution of the eij variables.

12. Dependencies Among Observations?

Authors proposing RCML models often argue with ‘dependencies among observations’ of indi-
viduals belonging to the same institutional unit. For example, Kreft and de Leeuw (1998, p. 9)
say:

Observations that are close in time and/or space are likely to be more similar than
observations far apart in time and/or space. Therefore, students in the same school
are more alike than students in different schools, due to shared experiences, shared
environment, etc. The sharing of the same context is a likely cause of dependency
among observations.

Many similar statements can be found in the literature (e.g., de Leeuw 2002, p. xx; Blien, Wieden-
beck and Arminger 1994, pp. 268-9; Diez-Roux 1998, p. 220; Pickett and Pearl 2001, p. 117; Rau-
denbush and Bryk 2002, p. 100; Hox 2002, p. 5; Gorard 2003; Kim, Solomon and Zurlo 2009,
p. 266; Heck and Thomas 2009, pp. 12, 76). Unfortunately, the expression ‘dependency among
observations’ has no well-defined meaning.

One context for attempting an understanding is sampling theory. A clustered sampling scheme
will lead to ‘dependencies among observations’ in the sense that units belonging to the same
cluster have higher second-order inclusion probabilities (compared with units belonging to dif-
ferent clusters). Being interested in the estimation of population parameters, the calculation
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of standard errors should take into account these dependencies (as reflected in the inclusion
probabilities to be derived from the sampling scheme).

However, this understanding of ‘dependencies among observations’ does not apply to the estima-
tion of the parameters of an analytical multilevel model. These are not population parameters,
but quantities postulated by setting up a model. Correspondingly, the random variables in these
models are not defined w.r.t. a sampling scheme, but reflect the uncertainty in using the model
for predictions. In other words, analytical models relate, not to data-generating processes (lit-
erally understood), but to processes that generate facts (possibly observed and then taken as
data by a data-generating process).

Observations for estimating the parameters of an analytical model might come from a clustered
sampling scheme, but this would be irrelevant for the definition and estimation of standard
errors of the parameter estimates. For example, parameters of the contextual model (4) can
be estimated with OLS regardless of the sampling scheme used to generate observations. Al-
ternatively, one can start from assuming a parametric distribution for the dependent variable
and then use maximum likelihood estimation. As already mentioned, this approach provides
the opportunity to model heteroscedastic error terms. In any case, neither OLS nor maximum
likelihood estimation will lead to ‘wrong’ standard errors. It should be stressed that, when
referring to analytical models, standard errors cannot be defined by referring to a sampling
distribution (derived from a sampling scheme). A reasonable alternative could be to think in
terms of ‘precision’ that can be obtained from the given observations. However, leaving aside
technical details, this line of reasoning makes standard errors always conditional on the data
used to estimate model parameters.

In fact, proponents of RCML models most often do not argue with sampling schemes but with
hierarchical structures. Reasoning in terms of (dependencies among) observations is then no
longer appropriate. Instead, one has to think about how individuals might depend on relation-
ships with other individuals belonging to the same institutional unit. Explicit modeling of such
relationships would require the definition of a structured unit (allowing one to represent rela-
tionships between individuals by variables). When developing analytical models for a generic
individual, the only option is to use contextual variables describing how the generic individual
depends on other individuals and their properties.

13. Conclusion

We conclude that analytical multilevel models focusing on generic individuals can be set up
as contextual models. These are regression models that use contextual variables to represent
conditions deriving from the individual’s belonging to an institutional unit. Assuming that
the individuals belonging to an institutional unit cannot be identified by referring to structural
positions, their interdependencies cannot be modeled in terms of a joint distribution. The
obscure talk of ‘dependencies among observations’ cannot (therefore) be given a clear meaning
(e.g., in terms of correlations among variables). Instead, one has to use contextual variables to
capture an individual’s dependence on other individuals and their properties.

Compared with contextual models, RCML models do not offer advantages when the goal is to
explain individual outcomes. The distinction between level-1 and level-2 variables suggested
by RCML models should not be used for substantive conclusions. In particular, there is no
reliable meaningful interpretation for the variance components associated with the level-2 error
variables.
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