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Rohwer

Uses of Probabilistic Models of Unit Nonresponse

Abstract

Attempts to cope with unit nonresponse in surveys are often based on probabilistic models which
posit ‘probabilities of response’, and then think of these probabilities as being dependent on a
set of identifiable (and known) variables. This paper discusses how to understand and use such
models. The discussion is based on a distinction between two purposes for which the sampled
data can be used. (a) Descriptive estimation of statistical distributions which are defined for
a particular target population from which the sample is drawn. (b) Estimation of functional
models (models formalizing probabilistic rules) which concern the behavior of a generic unit
conditional on known values of some variables. The paper also discusses how probabilistic
models of unit nonresponse can be used for the construction of nonresponse weights. It is shown
that there are no general answers to the question whether such weights lead to a reduction
of nonresponse bias. The paper ends with a suggestion for including information about unit
nonresponse into data files for scientific use.

Keywords

unit nonresponse, nonresponse weights, descriptive estimation, model estimation
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1. Introduction

Attempts to cope with unit nonresponse in surveys are often based on probabilistic models which
posit ‘probabilities of response’, and then think of these probabilities as being dependent on a
set of identifiable (and known) variables. This paper discusses how to understand and use such
models.

The discussion is based on a distinction between two purposes for which the sampled data can
be used. (a) Descriptive estimation of statistical distributions which are defined for a particular
target population from which the sample is drawn. (b) Estimation of functional models (models
formalizing probabilistic rules) which concern the behavior of a generic unit conditional on known
values of some variables. The distinction is helpful because relationships with response models
are different. Being itself a kind of functional model, a response model can be directly integrated
into the primarily interesting functional model in order to assess what can be estimated with the
available data. In contrast, there is no easy way to integrate response models into the standard
approach to descriptive estimation that is based on randomization via a sampling design.

The paper is only concerned with unit nonresponse resulting from decisions of (through the
sampling design) selected units after they have been contacted. It will be assumed throughout
that respondents provide complete information about all variables of interest. In section 2. I
discuss descriptive estimation; functional models will be considered in section 3.. Section 4.
concludes with a suggestion for the presentation of data.

2. Consideration of Descriptive Estimation

2.1 The Formal Framework

Let Ω denote the target population, a finite set of units. The interest may concern:

a) The distribution of a statistical variable Y , to be understood as a function Y : Ω −→ Y
which assigns to each unit ω ∈ Ω an element Y (ω) of the variable’s property space Y.
(Y , like all other variables introduced below, may consist of two or more components.) The
distribution of Y in Ω will be denoted by P[Y ]; for specific values I use the notation P(Y =y),
meaning the proportion of units in Ω having the value y of the variable Y . Of course, one
might also be interested in quantities derived from Y ’s distribution (e.g., the mean of Y ).

b) Regression functions which are derived from the distribution of a two-dimensional statistical
variable (X,Y ) : Ω −→ X × Y. I use the notation

x −→ P[Y |X=x] (1)

meaning that the regression function assigns to each value x ∈ X the conditional distribution
of Y given X =x. Specific values of the conditional distribution will be denoted by P(Y =
y |X=x).1

Now let S ⊂ Ω denote a sample of units randomly drawn from Ω. Until further notice I
assume that S is a simple random sample (design-based weights will be considered in section
2.4.4). Variables restricted to the sample will be denoted by Y s and (Xs, Y s), respectively. If
complete information would be available, one could use P[Y s] and P[Y s|Xs=x] for estimating
P[Y ] and P[Y |X=x]. However, in case of unit nonresponse, one knows values of the variables
only for a subset of the sample, say Sr ⊂ S. This can be described by introducing a variable
Rs : S −→ {0, 1}, with Rs(ω) = 1 if ω ∈ Sr and Rs(ω) = 0 otherwise. The information available

1For ease of notation, I suppose that all variables have a discrete property space.
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is then given by the distributions P[Y s|Rs =1] and P[Y s|Xs = x,Rs =1], respectively. In case
of descriptive estimation, the question is how one can use this information for the estimation of
P[Y ] and P[Y |X=x]. More specifically, there are two questions:

(1) Under which conditions does P[Y s|Rs=1] provide a plausible estimate of P[Y s] (that is,
nonresponse can be ignored)?

(2) Given that there is a nonresponse bias (defined in some way by quantifying the difference
between P[Y s] and P[Y s|Rs =1]), can one find a better estimate of P[Y s] which reduces
this bias?

Analogous questions can be formulated for conditional distributions (regression functions).

2.2 Probabilistic Models of Unit Nonresponse

The basic idea is to posit ‘probabilities of response’ and then to think of these probabilities as
being dependent, in some regular way, on values of identifiable variables. As a formal framework
for this idea, I use the notation

h −→ Pr(Ṙ=1 | Ḧ=h) (2)

to be interpreted as a probabilistic rule: If the variable Ḧ has the value h (an element in the
property space H), then the probability of response, recorded by Ṙ = 1, is Pr(Ṙ=1 | Ḧ =h).2

Notice that neither Ḧ nor Ṙ are statistical variables.3 In contrast to the statistical variable Rs,
Ṙ is a random variable (indicated by the dot). Moreover, there is no unconditional distribution
of Ṙ; the model only provides probability distributions conditional on values of Ḧ. The model
neither requires nor implies a distribution of Ḧ; this is an exogenous variable of the model
(indicated by two dots), and only serves to specify the if -part of the rule formulated by the
model (2).

How to understand the random variable Ṙ ? A first question concerns the nature of the associated
conditional probability distributions. In a first understanding, the model formulates a rule
for predictions: Referring to a unit, say ω, being approached to participate in the survey (in
order to get information about values of the variables of interest), and knowing ω’s value of
Ḧ, one could use (2) to probabilistically predict whether ω will participate (and one will get
the information). However, there is no point in using (2) for such predictions; and in fact,
when dealing with the questions formulated at the end of section 2.1, the most important role is
played by assumptions, not entailed in the formulation of the response model. These assumptions
concern the approximate independence of Ṙ from the variables of interest, conditional on values
of the variable Ḧ that is used in the response model.

A further question concerns the demarcation of units for which the model is intended to hold.
I distinguish between a global response model, assumed to be valid for all units in the target
population, and a local response model, assumed to be valid only for units in the selected sample.
In the following considerations I always assume a local response model.

2.3 Formulating Independence Assumptions

How to formulate assumptions about conditional independence between Ṙ and the variables of
interest depends on the conceptual framework. In this section, I consider first a direct reference

2Pr is used for probabilities and should be distinguished from frequencies, referred to by P, which are defined as
proportions in finite reference sets.
3I use this term to denote a function having a sample or target population as its domain, like Y introduced
above.

NEPS Working Paper No. 5, 2011 Page 4



Rohwer

to statistical variables, then very briefly a probabilistic modeling approach. (Another kind of
modeling approach which is not restricted to descriptive estimation will be discussed in section
3..)

2.3.1 Direct Use of Statistical Variables

Suppose that the statistical variable of interest is Y . In order to establish a relationship of the
response model with this variable, one can include a correspondingly defined exogenous variable,
Ÿ , in the model; the independence assumption can then be formulated as

Pr(Ṙ=1 | Ḧ=h, Ÿ =y) = Pr(Ṙ=1 | Ḧ=h) (3)

This assumption can be used to argue that

P(Rs=1 |Hs=h, Y s=y) ≈ P(Rs=1 |Hs=h)

(where Hs is a statistical variable, defined for the sample S, corresponding to Ḧ) holds approx-
imately;4 and consequently

P(Y s=y |Hs=h) ≈ P(Y s=y |Hs=h,Rs=1) (4)

Finally one can derive

P(Y s=y) ≈
∑

h
P(Y s=y |Hs=h,Rs=1)P(Hs=h) (5)

showing how P[Y s], and consequently P[Y ], can plausibly be estimated by using the information
from the realized sample Sr in combination with the distribution of Hs in the complete sample.5

The argument only requires a local response model. However, in addition to the assumption that
all units in the selected sample have a positive response probability, also the actually observed
response proportions, P(Rs=1|Hs=h), must be positive.

An analogous consideration can be used for the estimation of conditional distributions (regression
functions). Starting from the independence assumption

Pr(Ṙ=1 | Ḧ=h, Ÿ =y, Ẍ=x) = Pr(Ṙ=1 | Ḧ=h, Ẍ=x)

one could assume that

P(Rs=1 |Hs=h, Y s=y,Xs=x) ≈ P(Rs=1 |Hs=h,Xs=x)

is approximately valid for the sample. This would allow one to derive

P(Y s=y |Xs=x,Hs=h,Rs=1) ≈ P(Y s=y |Xs=x,Hs=h)

and finally

P(Y s=y |Xs=x) ≈ (6)
∑

h
P(Y s=y |Xs=x,Hs=h,Rs=1)P(Hs=h|Xs=x)

One would need the conditional frequencies P(Hs = h |Xs = x) for the complete sample S. If
they are not available, an easy solution would be to consider the enlarged regression function
(x, h) −→ P[Y |X = x,H = h] which includes H (now with domain Ω) as a regressor variable.
More generally formulated, unit nonresponse can be ignored if, conditional on the regressor
variables, responses do not depend on the dependent variable of the regression function.

4Using the approximation sign ≈ instead of an equal sign is required because the notion of stochastic independence
has no direct counterpart for frequencies in finite sets.
5If values of Hs are not available for nonrespondents, it might sometimes be possible to use known population
proportions P(H=h) instead of P(Hs=h). The approach then becomes a form of post-stratification (Holt and
Elliot 1991). If Hs consists of several components, say Hs = (Hs

1 , . . . ,H
s
m), procedures also depend on whether

the complete distribution or only marginal distributions of the components are known. For the latter case, raking
procedures have been suggested (Deville, Särndal and Sautory, 1993).
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2.3.2 Using a Probabilistic Modeling Approach

The approach just described requires to formally use approximate relationships between statisti-
cal distributions which cannot be quantified easily. A probabilistic modeling approach provides
an alternative. Supposing that the statistical variable of interest is Y s, this approach views the
values of this variable as realizations of a random variable Ẏ s (having the same property space
as Y s).6 Using a local response model, the independence assumption can then be formulated
with a strict equality sign as

Pr(Ṙ=1, Ẏ s=y | Ḧ=h) = Pr(Ṙ=1 | Ḧ=h) Pr(Ẏ s=y | Ḧ=h) (7)

This allows one to derive

Pr(Ẏ s=y | Ḧ=h) = Pr(Ẏ s=y | Ḧ=h, Ṙ=1) (8)

corresponding to (4). Based on this equation, one can argue that the observed distributions
P[Y s|Hs = h,Rs = 1], for h ∈ H, can be used to estimate the distribution of Ẏ s. Since Ẏ s is
intended to represent Y s, one would use

Pr(Ẏ s=y) =
∑

h
Pr(Ẏ s=y | Ḧ=h, Ṙ=1)P(Hs=h)

≈
∑

h
P(Y s=y |Hs=h,Rs=1)P(Hs=h)

which employs the observed proportions, P(Hs=h). Again, the argument presupposes that all
units in the selected sample have a positive response probability. (Further requirements depend
on the parameterization of Pr(Ẏ s=y | Ḧ=h) and the chosen estimation method.)

Analogous formulations can be used when the interest concerns conditional distributions (regres-
sion functions). This will be further discussed in section 3. where I consider functional models
which are not intended to make descriptive statements about a particular target population.

2.3.3 Propensity Scores

The response probabilities posited by a response model can be considered as propensity scores
(Rosenbaum and Rubin, 1983). Given a local response model (2), and assuming that there
is a variable Hs providing values of Ḧ for all units in S, one can define a statistical variable
rH : S −→ R having values

rH(ω) := Pr(Ṙ = 1 | Ḧ = Hs(ω)) (9)

rH(ω) is called ω’s propensity score (for response).7 As discussed by Rosenbaum and Rubin
(1983), presupposing the conditional independence (7), propensity scores can be used to con-
struct a coarsening of the conditioning.8 The argument uses the relationship

rH =r ⇐⇒ Hs ∈ Ar := {h ∈ H |Pr(Ṙ=1 | Ḧ=h) = r}

6In my understanding, this conceptual framework does not require to posit a process that randomly generated
the values of Y s in the selected sample. It suffices to think of the distribution of Ẏ s as a model intended to
provide an approximate representation of the distribution of Y s. The suggestion is to conceptually distinguish
between ‘representation’ and ‘generation’.
7In the present discussion, these propensity scores always concern the conditional probability distribution of the
response variable Ṙ. This is different from Rosenbaum and Rubin’s discussion where propensity scores concern
the assignment to a treatment or a control group. I discuss this difference in section 3.3.
8Which degree of coarsening is possible depends on the circumstances. It is quite possible that no coarsening
can be achieved; an example will be given in section 2.4.3.
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Starting from (7), one can derive9

Pr(Ṙ=1, Ẏ s=y | rH =r) = Pr(Ṙ=1 | rH =r) Pr(Ẏ s=y | rH =r) (10)

This shows that it suffices to condition on values of the propensity score variable rH .

It should be stressed that the notion of propensity scores, in order to become useful, presupposes
the conditional independence assumption (7) to hold at least approximately. Of course, even
without making this assumption, based on knowledge of the values of a variable Hs for all units
in the sample S, one can set up a response model in the sense of (2). Depending on the property
space H, this might require to employ a parametric form of the model.10 The model can then be
estimated, and propensity scores, as defined in (9), can be calculated for all units in S. However,
such an exercise of estimating a response model does not contribute any argument for believing
the assumption (7).

2.4 Nonresponse Adjustment Weights

The considerations in section 2.3 concern the first of the two questions distinguished at the
end of section 2.1: If the relevant independence assumption holds, unit nonresponse can be
ignored. However, such assumptions are not entailed by the response model but must explicitly
be added; and it is difficult (if at all possible) to check and justify such assumptions. It is
important, therefore, to consider also the second question: whether, and how, a nonresponse
bias that would result from using the realized sample without further adjustment can be reduced.
In this section I consider definitions of adjustment weights that possibly contribute to reducing
nonresponse bias.

2.4.1 A First Definition of Adjustment Weights

A first definition (corresponding to the argument in section 2.3.1) directly uses reciprocal values
of the observed response proportions:

wa
ω := 1/P(Rs=1 |Hs=Hs(ω)) (11)

and therefore presupposes that these proportions are positive. The definition entails that
Σω∈Srwa

ω = |S|. Referring then to ‘adjustment cells’ Sh := {ω ∈ S |Hs(ω) = h}, and using
Sr
h := {ω ∈ Sh |R

s(ω) = 1} to denote the subsets of responding units, the approximation (4)
can be written as:11

∑
ω∈Sh

I[Y s=y](ω) ≈
∑

ω∈Sr
h

wa
ω I[Y s=y](ω) (12)

9The derivation uses the following general rule (α and β are arbitrary suitable expressions): If Pr(α |β, Ḧ=h) = c

for all h ∈ A, then Pr(α |β, Ḧ ∈ A) = c. Therefore, since for all h ∈ Ar

Pr(Ṙ=1 | Ẏ s=y, Ḧ=h) = Pr(Ṙ=1 | Ḧ=h) = r,

it follows that Pr(Ṙ=1 | Ẏ s=y, Ḧ ∈ Ar) = Pr(Ṙ=1 | Ḧ ∈ Ar) = r, or equivalently,

Pr(Ṙ=1 | Ẏ s=y, rH=r) = Pr(Ṙ=1 | rH=r) = r

from which (10) immediately follows. Of course, propensity scores must not be zero.
10If the number of values of Hs is large, the observed frequencies P(Rs=1|Hs=h) will often be zero or one and
cannot immediately be used as propensity scores intended to be usable as conditions. This can be avoided by
defining propensity scores by a parametric model (see Rosenbaum and Rubin, 1983: 47).
11Here and below I use indicator variables, e.g. I [Y s=y](ω) = 1 if Y s(ω) = y, and 0 otherwise.
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Table 1 Artificial data for a sample consisting of 10 units.

Unit Y s Rs Hs

1 Hs

2

ω1 1 1 1 1
ω2 1 1 2 2
ω3 1 1 2 2
ω4 1 1 2 1
ω5 1 0 1 2
ω6 0 1 1 1
ω7 0 1 1 1
ω8 0 0 1 2
ω9 0 0 1 2
ω10 0 0 1 2

It follows that

∑
ω∈S

I[Y s=y](ω) ≈
∑

ω∈Sr
wa
ω I[Y

s=y](ω)

and this approximation can be used as a starting point for the formulation of estimators which
attempt to compensate for unit nonresponse. For example, one can use

1

|S|

∑
ω∈Sr

wa
ω I[Y s=y](ω) (13)

to estimate P(Y s=y).

2.4.2 Reduction of Nonresponse Bias?

It is well possible that the estimator (13) reduces the nonresponse bias that would result from
using the uncorrected estimator P(Y s= y |Rs= 1), given that the independence assumption (4)
does not hold. It is, however, difficult to identify conditions for this to be the case. An example
can show that there is no simple relationship with response predictions.

Table 1 shows artificial data for a sample consisting of 10 units. The variable of interest is Y s,
and it is assumed that P(Y s=1) = 0.5. The response rate is P(Rs=1) = 0.6. The uncorrected
estimate is obviously biased: P(Y s = 1|Rs = 1) = 0.67. The table also shows two auxiliary
variables, Hs

1 and Hs
2 , which can be used to calculate values of the estimator (13). The example

shows two things.

a) Using nonresponse adjustment weights can lead to a decrease, but also to an increase of the
nonresponse bias. In the example, using Hs

1 , the new estimate is 0.53, but using Hs
2 , the

new estimate is 0.8.

b) Hs
2 leads to an increased bias although it provides better predictions of Rs than Hs

1 . (Based
on Hs

1 , the proportion of correct predictions of Rs is 0.7, based on Hs
2 , the proportion is 0.8.)

This shows that there is no simple relationship between nonresponse bias reduction and the
degree to which auxiliary variables allow one to predict responses.

There is, however, a possibly useful argument that starts from the observation that the size of
(a version of) nonresponse error depends on the correlation between Y s and Rs. Using M for
the mean of statistical variables, the covariance of Y s and Rs can be written as

Cov(Y s, Rs) = M(Y sRs)−M(Y s)M(Rs) (14)

= M(Y s|Rs=1)M(Rs)−M(Y s)M(Rs)
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A version of nonresponse bias is then given by

M(Y s|Rs=1)−M(Y s) =
Cov(Y s, Rs)

M(Rs)
(15)

This shows that, given a fixed response rate M(Rs) = P(Rs = 1), the nonresponse bias is
positively related to the covariance of Rs and Y s. Therefore, in order to hopefully reduce
the nonresponse bias with the help of auxiliary variables, one should find such variables which
correlate with Y s and thereby reduce the conditional covariance of Rs and Y s. This is illustrated
by the example: Cov(Y s,Hs

1) = 0.15, Cov(Y s,Hs
2) = 0.

Notice that (15) cannot immediately be used to suggest a positive relationship between the
nonresponse bias and the nonresponse rate.12 The covariance of Rs and Y s does not relate in
any systematic way to the nonresponse rate. It depends, of course, on Y s, and the nonresponse
bias therefore depends on the variable of interest.

2.4.3 Weights Derived from Parametric Models

Using the nonresponse adjustments weights wa
ω requires that there is at least one respondent in

each adjustment cell; this restricts to some degree the possibilities of defining such cells. As an
alternative, one can use the response model to define weights:

wb
ω := 1/Pr(Ṙ=1 | Ḧ=Hs(ω)) (16)

Of course, when using P(Rs = 1 |Hs =Hs(ω)) to estimate Pr(Ṙ= 1 | Ḧ =Hs(ω)), the weights
will be identical. However, starting from (16) opens the opportunity to derive weights from
parametric forms of response models. One can use, for example, a logit model

Pr(Ṙ=1 | Ḧ=h) ≈
exp(g(h; θ))

1 + exp(g(h; θ))

where g(h; θ) is a link function (whose specification depends on the property space of Ḧ).13 This
allows one to estimate, for each ω ∈ S, a response probability (propensity score)

r̂(ω) :=
exp(g(Hs(ω); θ̂))

1 + exp(g(Hs(ω); θ̂))
(17)

These values can be used in two different ways.

a) One possibility is to define individual adjustment weights, say ŵb
ω, proportional to 1/r̂(ω)

and scaled to satisfy Σω∈Srŵb
ω = |S|. This approach uses response probabilities only of units

who actually responded (are contained in Sr).

b) Alternatively, one can use the response probabilities of all units in S. A simple approach uses
quantiles of the distribution of these probabilities to define adjustment cells. For example, in
order to define five adjustment cells one could use quintiles of the distribution of the response
probabilities r̂(ω).

It seems natural to form adjustment cells consisting of units with similar propensity scores (as
implied when using quantiles). The following conjecture, if true, would provide an argument:

If |r − r1| < |r − r2| , then P[Y s|rH = r] is more similar (18)

to P[Y s|rH = r1] than to P[Y s|rH = r2].
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Table 2 Artificial data for a sample consisting of 32 units.

ω Y s Rs Hs ω Y s Rs Hs ω Y s Rs Hs

1 0 1 1 11 0 1 2 23 0 1 3
2 0 1 1 12 1 1 2 24 0 1 3
3 1 1 1 13 1 1 2 25 0 1 3
4 1 1 1 14 1 1 2 26 0 1 3
5 0 0 1 15 0 1 2 27 1 1 3
6 0 0 1 16 1 1 2 28 1 1 3
7 0 0 1 17 1 1 2 29 1 1 3
8 1 0 1 18 1 1 2 30 1 1 3
9 1 0 1 19 0 0 2 31 0 0 3

10 1 0 1 20 1 0 2 32 1 0 3
21 1 0 2
22 1 0 2

This is not generally true, however, even if the conditional independence assumption (7) holds.
Consider the artificial data in Table 2. The three propensity scores and corresponding distribu-
tions of Y s are as follows:

if Hs = 1: rH = 0.4, P(Y s = 1 | rH = 0.4) = 0.5
if Hs = 2: rH = 0.67, P(Y s = 1 | rH = 0.67) = 0.75
if Hs = 3: rH = 0.8, P(Y s = 1 | rH = 0.8) = 0.5

They clearly contradict the conjecture (18). Note that Y s and Rs are approximately independent
in this example. The example also shows that propensity score variables are not always coarser
than the auxiliary variables from which they are derived.

That (18) is not true is relevant for the argumentation with propensity scores. The basic
argument is: Given the independence assumption (7), conditioning on propensity scores makes
observed values of Ṙ uninformative about the distribution of Ẏ s. Formally, Pr[Ẏ s | rh = r, Ṙ =
1] = Pr[Ẏ s | rh = r] for the model, or P[Y s | rh = r,Rs = 1] ≈ P[Y s | rh = r] for the actual
observations. These relationships are no longer true, however, when rH = r is substituted
by rH ∈ [r1, r2] (an interval of propensity scores). The important point is that there is no
generally valid systematic relationship between propensity scores and quantities connected with
the distribution of Ẏ s (or Y s).

2.4.4 Combining Adjustment and Sampling Weights

So far I have assumed that S is a simple random sample. The aim of nonresponse adjustment
then is to find a plausible estimate of the distribution of Y s. This must be modified if units are
drawn with unequal probabilities. In order to estimate P(Y = y), one would then use

1

|S|

∑
ω∈S

ws
ω I[Y s=y](ω)

where ws
ω are design-based weights, and the aim of nonresponse adjustment should be to find a

plausible estimate of this quantity.

Suitably modified, one can use the argument for simple random samples. Details depend on
the sampling design. To illustrate, I consider stratified sampling, based on a stratification

12There also is only scarce empirical support for this sometimes supposed relationship; see Groves (2006).
13Many different models might be employed. However, when to be used for the construction of nonresponse
adjustment weights, the goal of such models is not to find optimal predictions of responses; and it is therefore
difficult to see in which sense such models could be misspecified as it is sometimes suggested in the literature
(e.g., da Silva and Opsomer, 2009).
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variable K. The sample consists of subsets, say S(k), which are simple random samples of
the corresponding population strata. Analogous to (12), using adjustment cells Sk,h := {ω ∈
S |Ks(ω) = k,Hs(ω) = h}, the assumption of approximate conditional independence can then
be written as

∑
ω∈Sk,h

I[Y s=y](ω) ≈
∑

ω∈Sr
k,h

wc
ω I[Y

s=y](ω)

using adjustment weights wc
ω := 1/P(Rs=1 |Ks=Ks(ω),Hs=Hs(ω)). It follows that

∑
ω∈S(k)

I[Y s=y](ω) ≈
∑

ω∈Sr
(k)

wc
ω I[Y

s=y](ω)

and finally

1

|S|

∑
ω∈S

ws
ω I[Y s=y](ω) ≈

1

|S|

∑
ω∈Sr

ws
ωw

c
ω I[Y s=y](ω)

showing that nonresponse adjustment weights and design-based sampling weights can be com-
bined. Notice, however, that the adjustments weights must be properly defined for the actual
sampling design. If the response proportions (or probabilities) depend on values of the stratifi-
cation variable, one cannot simply use the weights wa

ω (or wb
ω) which are based on assuming a

simple random sample.

2.5 The Quasi-Randomization Approach

It might seem tempting to draw an analogy between design-based and nonresponse adjustment
weights.14 The analogy is, however, superficial. In contrast to selection probabilities defined by
a sampling design, response probabilities posited by a response model do not correspond to a
random generator. Justification of nonresponse adjustment weights cannot, therefore, be based
on a randomization procedure. If such weights contribute to providing better estimates, this is
due to the assumption of independence between Ẏ s (or Y s) and Ṙ being approximately valid in
each adjustment cell.

It also follows that randomization-based arguments for the unbiasedness of an estimator cannot
easily be extended to situations involving unit nonresponse. Such arguments for showing that
an estimator, e.g. for P(Y =y), is unbiased require that one has information about values of Y
for all units in the selected sample. In order to extend such arguments to situations involving
unit nonresponse, one first of all would need to devise a random mechanism for the generation
of realized samples. This has been called a ‘quasi-randomization approach’ for dealing with
unit nonresponse.15 To illustrate, one might use the response model (2) to construct a random
generator for realized samples in the following way:

Given S, for each ω ∈ S randomly generate a value of

Ṙ, conditional on Ḧ = Hs(ω), and define Sr as the set of

units having Ṙ = 1.

(19)

14For example, Little and Vartivarian (2005: 161) remarked: “Nonresponse weighting is primarily viewed as a
device for reducing bias from unit nonresponse. This role of weighting is analogous to the role of sampling weights,
and is related to the design unbiasedness property of the Horvitz-Thompson estimator of the total (Horvitz and
Thompson 1952), which weights units by the inverse of their selection probabilities. Nonresponse weighting
can be viewed as a natural extension of this idea, where included units are weighted by the inverse of their
inclusion probabilities, estimated as the product of the probability of selection and the probability of response
given selection; the inverse of the latter probability is the nonresponse weight.”
15Oh and Scheuren (1983). See also Särndal, Swensson and Wretman (1992: ch. 15) where a similar approach is
used.
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This would allow one to define inclusion variables that are random variables w.r.t. (19): İrω(S
r) =

1 if ω ∈ Sr, and = 0 otherwise; and to derive inclusion probabilities

Pr(İrω = 1) =
∑

Sr
İrω(S

r) Pr(Sr|Hs) = Pr(Ṙ=1 | Ḧ=Hs(ω))

These variables could then be used to define an estimator for P(Y s=y):16

ey,S(S
r) :=

1

|S|

∑
ω∈S

wb
ω I[Y s=y](ω) İrω(S

r)

employing the weights defined in (16). The expectation w.r.t. (19) is

E(ey,S) =
∑

Sr
ey,S(S

r) Pr(Sr|Hs)

=
∑

Sr

1

|S|

∑
ω∈S

wb
ω I[Y

s=y](ω) İrω(S
r) Pr(Sr|Hs)

=
1

|S|

∑
ω∈S

wb
ω I[Y s=y](ω)

∑
Sr
İrω(S

r) Pr(Sr|Hs)

=
1

|S|

∑
ω∈S

wb
ω I[Y s=y](ω) Pr(Ṙ=1 | Ḧ=Hs(ω))

Obviously, the estimator would be unbiased w.r.t. the random generator devised in (19).

However, since this random generator is purely fictitious, it is questionable whether the ap-
proach is useful. Consider the critical assumption that responses and variables of interest are
(approximately) independent conditional on values of the regressor variables of the response
model. This assumption would be entailed if the random generator devised in (19) really gener-
ated the realized sample. Since this is not the case, also the quasi-randomization approach must
presuppose this assumption. The fictitious random generator therefore does not contribute any
relevant argument to showing that using the adjustment weights wb

ω (derived from the response
model) provides plausible estimates.

3. Consideration of Functional Models

I now consider functional models that serve to formulate rules for generic units (or situations).
Such models can be conceptualized either as deterministic or as probabilistic models (Rohwer
2010, 2011). Here I only consider probabilistic functional models (subsequently I drop the
adjective ‘probabilistic’ and simply speak of functional models).

The most simple functional model assumes that the probability distribution of an endogenous
variable, say Ẏ (with property space Y) depends on values of an exogenous variable, say Ẍ (with
property space X ); graphically depicted:

Ẍ −→→ Ẏ (20)

The exogenous variable Ẍ serves to specify conditions. Since its values can be arbitrarily fixed,
it can be conceived of neither as a statistical nor as a random variable. To remind of its special
status as an exogenous variable without an associated distribution it is marked by two dots.
Since Ẍ has no distribution, there also is no distribution for Ẏ (and it is therefore not a random
variable in the usual sense of the word). However, in order to make quantitative statements
possible, one can think of distributions of Ẏ if particular values of Ẍ are fixed. To make this
idea explicit, one uses a stochastic function, x −→ Pr[Ẏ | Ẍ=x], that assigns to each value x of
Ẍ a probability distribution of the variable Ẏ .

16Here I assume again that S is a simple random sample.
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Functional models can be estimated with data from random samples.17 Details depend on
whether and how the models are parameterized. Here I only consider difficulties which could
result from unit nonresponse. The basic idea is to integrate a response model into the primarily
interesting functional model and then consider reduced models resulting from conditioning on
response (Ṙ=1).

3.1 Basic Forms of Combined Models

I assume that (20) is the model of primary interest and there is a further endogenous variable,
Ṙ, indicating how the sampled data relate to the model. The data only allow one to estimate
Pr[Ẏ | Ẍ=x, Ṙ=1], and the question is whether, and how, one can estimate Pr[Ẏ | Ẍ=x].

(A) A first situation occurs when the response variable only depends on exogenous variables:

(21)
Ẏ

Ṙ

Ẍ --

??

This entails that, conditional on values of Ẍ, Ẏ and Ṙ are stochastically independent:

Pr(Ẏ =y, Ṙ=1 | Ẍ=x) = Pr(Ẏ =y | Ẍ=x) Pr(Ṙ=1 | Ẍ=x) (22)

and consequently

Pr(Ẏ =y | Ẍ=x, Ṙ=1) = Pr(Ẏ =y | Ẍ=x) (23)

In order to estimate the model of interest, one can use the data from the realized sample Sr

without the need to adjust for unit nonresponse. Of course, a consequence of nonresponse could
be that for some values (or regions) in the property space of Ẍ no, or only very few, observations
are available, and this must then be taken into account.

(B) Equation (22) will be valid if Ṙ, but not Ẏ , also depends on values of a further exogenous
variable, say Z̈. A possibly different situation occurs when also Ẏ depends on Z̈:

(24)
Ẏ

Ṙ

Ẍ

Z̈

--

??
66

��

This formally equals (21) with an exogenous variable (Ẍ, Z̈) consisting of two components. A
new situation occurs, however, when values of Z̈ cannot be observed. First of all, it is necessary
then to explicitly define the reduced model that one intends to estimate. Note that already the
definition of this reduced model requires either to fix a specific value of Z̈, or to substitute Z̈ by
a variable for which one can assume a distribution (see Rohwer 2010: 52ff).

Assume that Z̈ is substituted by a random variable, Ż, with an unknown distribution, but the
structure of the model is not changed so that Ż is still an exogenous variable and independent
of Ẍ. One might then be interested in a reduced model, Ẍ −→→ Ẏ , defined by

Pr(Ẏ =y | Ẍ=x) =
∑

z
Pr(Ẏ =y | Ẍ=x, Ż=z) Pr(Ż=z)

17It would be possible to think of the functional model as intending a description of the population from which the
sample is drawn. However, the general notion of a functional model does not require its linkage to any particular
target population.
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Additional conditioning on Ṙ = 1 results in

Pr(Ẏ =y | Ẍ=x, Ṙ=1) =
∑

z
Pr(Ẏ =y | Ẍ=x, Ż=z) Pr(Ż=z | Ẍ=x, Ṙ=1)

Since Pr(Ż = z | Ẍ = x, Ṙ= 1) 6= Pr(Ż = z), unit nonresponse cannot be ignored; and since Ż
cannot be observed, there is no way to eliminate the nonresponse error.

(C) A further situation occurs when the response variable also depends on values of an endoge-
nous variable in the model of primary interest:

(25)
Ẏ

Ṙ

Ẍ --

??
������

�����

The conditional independence formulated in (22) is no longer valid. The available data only
allow one to estimate Pr[Ẏ |Ẍ = x, Ṙ = 1], and there are no possibilities to empirically assess
deviations from Pr[Ẏ |Ẍ=x].

It would not even suffice to know, or make assumptions about, the response model (x, y) −→
Pr(Ṙ=1 | Ẍ=x, Ẏ =y). The relationship between the model of interest and the model that can
be estimated with the realized sample is given by

Pr(Ẏ =y | Ẍ=x) = (26)

Pr(Ẏ =y | Ẍ=x, Ṙ=1)
Pr(Ṙ=1 | Ẍ=x)

Pr(Ṙ=1 | Ẍ=x, Ẏ = y)

showing that the joint distribution of Ẏ and Ṙ, conditional on values of Ẍ, would be required.

3.2 Bias Reduction with Auxiliary Variables

Mainly two strategies have been proposed for situations in which responses depend on an en-
dogenous variable of a functional model. One strategy relies on specific assumptions about the
mathematical form of the joint distribution of Ẏ and Ṙ. Another strategy that will be considered
in the present section is similar to the use of nonresponse adjustment weights in the context of
descriptive estimation.

I refer to the combined model (25). One is interested in Pr[Ẏ |Ẍ =x], but the data only allow
one to estimate Pr[Ẏ |Ẍ =x, Ṙ=1]. In order to assess the nonresponse error, one may use the
equation

Cov(Ẏ, Ṙ | Ẍ=x) =

E(Ẏ | Ẍ=x, Ṙ=1)E(Ṙ | Ẍ=x)− E(Ẏ | Ẍ=x) E(Ṙ | Ẍ=x)

This is similar to (14), but now conditional on values of Ẍ , and implies

E(Ẏ | Ẍ=x, Ṙ=1)− E(Ẏ | Ẍ=x) =
Cov(Ẏ, Ṙ | Ẍ=x)

E(Ṙ | Ẍ=x)
(27)

showing that the nonresponse error is positively related to the covariance between Ṙ and Ẏ ,
conditional on values of Ẍ . One should therefore try to find auxiliary variables such that
additional conditioning on these variables diminishes the correlation between Ṙ and Ẏ .
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Instead of (25), there is then an enlarged model

(28)Ẏ

Ṙ

Ẍ

Ḣ

--

?? ??
��

������

�����

which includes an endogenous auxiliary variable Ḣ. If Ḣ adds to the prediction of Ṙ, it is likely
that additional conditioning on this variable will reduce (albeit in an unknown amount) the
nonresponse error due to the correlation between Ẏ and Ṙ.

Sometimes it might be possible to find auxiliary variables such that the direct arrow from Ẏ to
Ṙ can be omitted:

(29)Ẏ

Ṙ

Ẍ

Ḣ

--

?? ??
��

If this is justified, the model entails the conditional independence relation

Pr(Ẏ =y | Ẍ=x, Ḣ=h, Ṙ=1) = Pr(Ẏ =y | Ẍ=x, Ḣ=h)

allowing to derive

Pr(Ẏ =y | Ẍ=x) =
∑

h
Pr(Ẏ =y | Ẍ=x, Ḣ=h, Ṙ=1)Pr(Ḣ=h | Ẍ=x)

However, in order to recover Pr(Ẏ = y|Ẍ = x), one would need the conditional probabilities
Pr(Ḣ=h | Ẍ=x) which cannot be estimated without bias when observations are conditional on
Ṙ=1, even if the auxiliary variable could be observed unconditionally.

3.3 Digression on Propensity Scores

Propensity scores, as introduced in section 2.3.3, concern responses of units selected for inclusion
in a sample. In this context, propensity scores are identical with response probabilities modeled
as being dependent on auxiliary variables in such a way that, conditional on these variables,
responses and variables of interest are (hopefully) approximately independent. In this section I
briefly compare this understanding with a usage of propensity scores, suggested by Rosenbaum
and Rubin (1983), that intends to simulate randomization w.r.t. confounders in observational
studies of causal effects.

In this context, Ṙ represents not a response, but the presence of a causal factor. Instead of (25),
the functional model is then given by

(30)Ẏ

Ṙ

Ẍ --

??�����*

����*

The outcome variable, Ẏ , depends on values of Ṙ and Ẍ . Ṙ represents the presence (Ṙ = 1)
or absence (Ṙ = 0) of a particular causal factor; Ẍ represents additional conditions on which Ẏ
depends. Hinted at by calling Ẍ a ‘confounder’, the interest concerns a reduced model, Ṙ−→→ Ẏ ,
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where Ẏ depends only on the particular causal factor. The causal effect of this factor could then
be defined by

Pr[Ẏ | Ṙ = 1]− Pr[Ẏ | Ṙ = 0] (31)

However, this reduced model cannot be derived from (30). In other words, given this model, a
causal effect as presupposed in (31) does not exist. In order to define this effect, one would need
a completely different model, namely

(32)
Ẏ

R̈

Ẋ --

66
�����*

����*

where the confounding variable is endogenous and the treatment variable is exogenous. This
model would allow one to derive the reduced model which is presupposed by (31), namely

Pr[Ẏ | R̈=r] =
∑

x
Pr[Ẏ | Ẋ=x, R̈=r] Pr(Ẋ=x | R̈=r) (33)

The idea of randomization w.r.t. the confounding variable starts from the model (32). The idea
is to generate a situation in which Pr[Ẋ | R̈ = 1] = Pr[Ẋ | R̈ = 0]. But this requires that the
arrow from R̈ to Ẋ can be dropped and Ẋ can be changed into an exogenous variable.

This might be possible in an experimental context where values of R̈ can be randomly assigned
to units. However, this cannot be done in observational studies when treatment variables are
endogenous as assumed in the model (30). This model requires to take seriously that the outcome
variable depends on values of Ṙ and Ẍ and that these variables are not independent. Of course,
the model entails the stochastic function

(r, x) −→ Pr[Ẏ | R̈=r, Ẍ=x] (34)

which can be used to define conditional effects:

Pr[Ẏ | R̈=1, Ẍ=x]− Pr[Ẏ | R̈=0, Ẍ=x] (35)

It is now easy to understand what can be achieved with propensity scores for ‘treatment assign-
ment’. These are probabilities Pr(Ṙ=1|Ẍ=x), taken as values of a variable, say S̈.18 Explicitly
defined:

S̈=s ⇐⇒ Ẍ ∈ Xs := {x ∈ X |Pr(Ṙ=1 | Ẍ=x) = s}

This variable can be used instead of Ẍ in (34), but the only gain is a possibly coarser formulation
of the dependency on values of Ẍ:

(r, s) −→ Pr[Ẏ | R̈=r, S̈=s] = Pr[Ẏ | R̈=r, Ẍ ∈Xs] (36)

As stressed by Rosenbaum and Rubin (1983), Ṙ is independent of Ẍ, conditional on values of
S̈; but this fact does not lead to a kind of randomization. One still can only define conditional
effects (by substituting Ẍ = x with S̈ = s in (35)).

This finally reveals a further difference between the two uses of propensity scores. When con-
structing propensity scores for responses in surveys it might well be possible to find auxiliary
variables such that, conditional on their values, responses and variables of interest become
approximately independent. In contrast, starting from the model (30), propensity scores for
‘treatment assignment’ (Ṙ = 1) are already fixed by the model and therefore cannot be freely
constructed in such a way that these assignments become independent of further causally rele-
vant conditions.

18S̈ is an exogenous variable because it is derived from the exogenous variable Ẍ.
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4. Conclusion

The main conclusion of the foregoing discussion is that there is no generally applicable method
for successfully coping with unit nonresponse. Each usage of data from samples with a relevant
proportion of unit nonresponse requires a separate consideration of whether the nonresponses
can be ignored or, if not, whether and how nonresponse bias can be reduced.

This conclusion leads to two suggestions for the presentation of data sets for scientific use. (a)
The user should be given sufficient information about the sampling procedure in order to think
about how differences between the planned and the realized sample came into being. (b) If
possible, the data set should be supplemented with sufficient information that would allow the
user to calculate different versions of nonresponse adjustment weights (including the weights
which are distributed as part of the data set).
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