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Rohwer

Using Sampling Weights for Model Estimation?

Abstract

This paper discusses the question whether one should use (design-based) sampling weights when
estimating statistical models. It is argued that the answer depends, in particular, on the kind of
model to be estimated. The paper distinguishes three kinds. (1) Descriptive models that intend
to provide simplified descriptions of the distribution of variables defined for a target population.
It is argued that, except for some special situations, sampling weights should be taken into
account when estimating such models. (2) Probabilistic data models which start from the idea
that the data in a given sample can be viewed as realizations of random variables. It is argued
that thinking about the usage of sampling weights in the estimation of such models depends on
the understanding of the relationship between the model and the random variables serving to
represent the given data. (3) Probabilistic functional models which intend to formulate rules
for a generic unit defined without reference to any particular target population. It is argued
that using sampling weights in the estimation of such models is required only if the selection
probabilities used in the sampling procedure depend on endogenous variables of the model.

Keywords

sampling weights, stratified sampling, descriptive estimation, model estimation
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1. Introduction

This paper discusses the question whether one should use sampling weights when estimating
statistical models. It is argued that the answer depends, in particular, on the kind of model to
be estimated. I distinguish three kinds:

• Descriptive models that intend to provide simplified descriptions of the distribution of vari-
ables defined for a target population. I argue that, except for some special situations, sampling
weights should be taken into account when estimating such models.

• Probabilistic data models which start from the idea that the data in a given sample can be
viewed as realizations of random variables. I argue that thinking about the usage of sampling
weights in the estimation of such models depends on the understanding of the relationship
between the model and the random variables serving to represent the given data.

• Probabilistic functional models which intend to formulate rules for a generic unit defined
without reference to any particular target population. I argue that using sampling weights in
the estimation of such models is required only if the selection probabilities used in the sampling
procedure depend on endogenous variables of the model. I further suggest to rethink, and
possibly reformulate, the model if weighted and unweighted estimates differ significantly.

I consider only sampling weights that can be derived from a stratified sampling design. In
particular, I do not discuss the usage of weights intended to compensate for unequal response
rates. A further limitation is that I only discuss models for cross-sectional data.

2. Descriptive Models

I consider two kinds of descriptive models: Models intended to represent distributions of sta-
tistical variables in a target population, and descriptive regression models intended to describe
dependency relations between statistical variables in a target population. I begin with briefly
explaining my understanding of ‘descriptive estimation’.

2.1 Descriptive Estimation

The conceptual framework is given by a statistical variable

X : Ω −→ X

which is defined for a target population Ω consisting of a finite number of units. To each unit
ω, the variable X assigns an element X(ω) of the variable’s property space X . X could consist
of several components: X = (X1, . . . ,Xq) with a property space X = X1×· · ·×Xq. In any case,
one can refer to the variable’s distribution by quantities P(X = x) defined as the proportion of
units in Ω whose value of X is x (a specified element of X ).1 Descriptive estimation can then
be understood as intending to estimate the distribution P(X = x), or quantities derived from
this distribution (e.g. the mean of X), based on knowing the values of X for the members of a
random sample S ⊂ Ω.

Knowing the values of X for the members of a sample S entails that one can refer to a statistical
variable

Xs : S −→ X

1Analogously, one can use expressions like P(X ≤ x) and P(X ∈ M) where M is a subset of X .
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with Xs(ω) = X(ω) for all ω ∈ S; and one can calculate the quantities P(Xs = x) describing
the distribution of Xs in the sample. How these quantities can be used to estimate P(X = x)
depends on the sampling procedure. As a starting point, I take it that P(Xs = x) provides
a plausible estimate of P(X = x) if S is a simple random sample defined by equal selection
probabilities for all members of the population. (I discuss below in which sense one can also
speak of an ‘unbiased estimate’.)

In practice, sampling procedures often entail unequal selection probabilities. As a general frame-
work I consider stratified sampling based on information about a stratification variable

H : Ω −→ {1, . . . ,m}

Knowing this variable, one can define m subpopulations (strata), Ωj = {ω |H(ω) = j}, and one
also knows their sizes, Nj , such that ΣjNj = N , the size of the target population Ω.

Given this framework, one can define several different kinds of stratified sampling procedures.
In the following I consider just one form: From each subpopulation Ωj one takes a simple
random sample, Sj , having a predefined size nj. The overall sample is then defined as the union
S = S1 ∪ · · · ∪ Sm having the size n = n1 + · · ·+ nm.

If all sampling fractions nj/Nj equal n/N , the overall sample S is a simple random sample from
the target population and (by definition) provides plausible estimates. If, however, the sampling
fractions differ across the strata, one should use sampling weights. This can be seen as follows.
One intends to estimate

P(X = x) =
∑

j
P(X = x |H = j)

Nj

N
(1)

Then, given that2

P(Xs = x |H = j) =
1

nj

∑

ω∈Sj

I[X = x](ω)

is a plausible estimate of P(X = x |H = j), and defining weights

wω =
Nj

nj N
for ω ∈ Sj (2)

(entailing the normalization Σω∈S wω = 1),

∑

ω∈S
wω I[X = x](ω) (3)

is a plausible estimate of P(X = x).

Example

A simple example will be used for illustration. The target population consists of N = 100000
school-children having completed a specified grade. There are three variables: X records the
school type (0 or 1), Y records whether the grade was completed successfully (1) or not (0), and
Z records the parents’ educational level (0 = low or 1 = high). Table 1 shows the distribution
of these variables in the population and in a stratified sample.

The construction of the sample uses X (school type) as a stratification variable. The two
subpopulations are Ω1 consisting of N1 = 70000 school-children with X = 0, and Ω2 consisting of

2I use I [X = x] as an indicator variable defined for Ω: I [X = x](ω) = 1 if X(ω) = x, and I [X = x](ω) = 0
otherwise.
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Table 1 Distribution of (X,Z, Y ) in the population and in a stratified sample.

X Z Y Population Sample

0 0 0 20000 100
0 0 1 30000 150
0 1 0 4000 20
0 1 1 16000 80
1 0 0 2400 24
1 0 1 5600 56
1 1 0 2200 22
1 1 1 19800 198

N2 = 30000 school-children with X = 1. The sampling fractions are, respectively, 0.5% and 1%,
so that n1 = 350 and n2 = 300, and the overall sample size is n = 650. For ease of presentation,
and since we are not concerned with sampling errors, it is assumed that the variables’ distribution
in the subsamples equals their distribution in the corresponding subpopulations.

Now assume that we want to estimate P(Y = 1) = 0.714. Using the sample without weights
would result in a distorted estimate: 484/650 = 0.745. On the other hand, using the weights
wω = N1/(n1N) = 0.002 for ω ∈ S1, and wω = N2/(n2N) = 0.001 for ω ∈ S2, would give the
plausible estimate

∑

ω∈S wω I[Y = 1](ω) = 0.714.

Referring to a sampling design

So far the discussion was in terms of ‘plausible estimates’ based on a given simple or stratified
random sample S from a target population Ω. In order to introduce estimators, the reference
to a sampling design is required. A sampling design describes a method that can be used to
create random samples from a target population and specifies a probability distribution for the
set of possible samples. I assume that all possible samples have the same size, n, that is fixed
in advance.

Reference to a sampling design allows one to define, for each unit ω ∈ Ω, an inclusion variable,
that is, a random variable indicating whether the unit is included in a randomly generated
sample:

İω(S) =

{

1 if ω ∈ S
0 otherwise

(4)

To remind that this is a random variable (defined by the sampling design), and not a statistical
variable, it is marked by a dot. In addition one can define inclusion probabilities

π(ω) =
∑

S
İω(S) Pr(S) (5)

to be interpreted as the probability of generating a sample that includes the unit ω.

These notions can now be used to define estimators. For example, an estimator for P(X = x)
can be defined as

Ṗ[X = x](S) =
∑

ω∈Ω
wω I[X = x](ω) İω(S) (6)

with weights defined by wω = 1/(π(ω)N). Given the values of X for the units in a sample S,
one can use this estimator to calculate a specific estimate of P(X = x). The weights are chosen
as to make the estimator unbiased , meaning that its expectation (defined w.r.t. the sampling
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design) equals the quantity to be estimated:

E
(

Ṗ[X = x]
)

=
∑

S

∑

ω∈Ω
wω I[X = x](ω) İω(S) Pr(S)

=
∑

ω∈Ω
wω I[X = x](ω)π(ω) = P(X = x)

The weights are actually the same as defined in (2) since, in the stratified sampling design, the
inclusion probability of units belonging to subpopulation Ωj is π(ω) = nj/Nj . The argument
shows that the plausible estimate defined in (3) can be considered as produced by an unbiased
estimator. This allows one to speak of an ‘unbiased estimate’ in the sense that it is an estimate
generated with an unbiased estimator.

Joint and conditional distributions

Formula (3) can easily be extended to estimate joint distributions. For example, to estimate the
joint distribution of X and Z, one could use

∑

ω∈S
wω I[X = x,Z = z](ω) (7)

Using the data from the sample in Table 1, one would get the following estimates:

x z Estimate of P(X = x,Z = z)

0 0 0.002 · 250 = 0.50
0 1 0.002 · 100 = 0.20
1 0 0.001 · 80 = 0.08
1 1 0.001 · 220 = 0.22

Referring to the argument of the preceding subsection, these values can be considered as unbiased
estimates of the corresponding population quantities.

Estimates of conditional distributions can be derived from estimates of joint distributions. If
the selection probabilities used for sampling only depend on variables serving as conditions,
weights do not vary in the subsample specified by the conditioning, and it is not necessary to
employ weights. In the example, P(Y s = y |Xs = x,Zs = z) already is a plausible estimate of
P(Y = y |X = x,Z = z). Since the correspondingly defined estimator is not unbiased, this is
an example of a biased estimate that is, nevertheless, plausible.

2.2 Models for Distributions

The idea is to represent the distribution of a variable X in the target population, Ω, by a
function depending on parameters to be estimated. I use g(x; θ) as a generic formulation, to be
interpreted as a frequency or a density function, depending on whether the variable’s property
space, X , is conceived of as discrete or continuous.

How to estimate such models? In order to set up a well-defined estimation problem, one needs
to define the model to be estimated (that is, g(x; θ) and the particular value of the parameter
θ that should be estimated). The central idea of descriptive estimation, in my understanding,
is that one intends to estimate the model that could be calculated if complete data for all units
in the target population would be available. Of course, the definition is incomplete until one
also has specified a particular method of fitting the model to the data. The general approach
is to define a distance function that allows one to quantify the size of the difference between
the distribution of X and the model, and then to use the parameter value that minimizes this
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difference. Several possibilities exist. Here I refer to the maximum likelihood method which is
based on the distance function

dML(θ) =
∑

x∈X(Ω)
P(X = x)

(

log(P(X = x))− log(g(x; θ))
)

(8)

(X(Ω) is the set of different values of X in the target population).3 Minimizing this distance
function is equivalent with maximizing the following log-likelihood function:

ℓ(θ) =
∑

x∈X(Ω)
P(X = x) log(g(x; θ)) (9)

The model to be estimated is g(x; θ∗) where θ∗ is the value of θ that maximizes ℓ(θ).

The log-likelihood function immediately shows how to estimate the model with data from a
sample: P(X = x) should be substituted by a plausible (unbiased) estimate that can be derived
from the sample. Consequently, if it is a simple random sample, one can use the log-likelihood
function

ℓs(θ) =
∑

x∈X(S)
P(Xs = x) log(g(x; θ)) (10)

Representing the sample as S = {ω1, . . . , ωn}, and defining xi = X(ωi), this can also be written
as

ℓs(θ) =
1

n

∑

i=1,n
log(g(xi; θ)) (11)

If θ̂ maximizes this function, g(x; θ̂) can be considered as a plausible estimate of the model
g(x; θ∗).

Stratified sampling

If the data result from stratified sampling, one has to use sampling weights. The log-likelihood
function (derived by substituting P(X = x) in (9) by the plausible (unbiased) estimate (3)) is

ℓs(θ) =
∑

i=1,n
wi log(g(xi; θ)) (12)

where wi denotes the sampling weights as defined in (2): wi =
Nj

nj N
if xi belongs to subpopulation

Ωj.

To illustrate, I use the example introduced in Section 2.1. The goal is to estimate a model for
the distribution of the variable Y . Since it is a binary variable, a single parameter suffices for a
complete representation of the distribution; one can simply use a frequency function

g(y; θ) =

{

θ if y = 1
1− θ if y = 0

Inserting this into (12), one finds the maximand θ̂ =
∑

i=1,nwi yi. With the sample data from
Table 1 one gets the value

θ̂ = 0.002 · 150 + 0.002 · 80 + 0.001 · 56 + 0.001 · 198 = 0.714

which equals the value found in Section 2.1.

3For further discussion of this distance function see Rohwer and Pötter (2001: 148ff.).
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Continuous distribution models

Now assume that Y records school-children’s scores in a competence test. One might then use a
model based on a continuous distribution, for example a normal density function, say φ(y;µ, σ).
The log-likelihood function to be maximized would be

ℓs(µ, σ) =
∑

i=1,n
wi log(φ(yi;µ, σ)) (13)

The estimated model would be φ(y; µ̂, σ̂) where µ̂ and σ̂ maximize ℓs(µ, σ).

2.3 Descriptive Regression Models

Given two variables, X with property space X and Y with property space Y, defined for a target
population Ω, I define a descriptive regression function as a function that assigns to each value
x ∈ X the conditional distribution of Y given X = x; symbolically depicted:

x −→ P[Y |X = x] (14)

Descriptive regression models are correspondingly defined functions which substitute P[Y |X =
x], which is itself a function and not a single number,4 by a simplified description. Notice that
the approach of descriptive estimation allows one to make a clear distinction between the model
and the thing to be represented by the model (here a descriptive regression function).

If Y is a discrete variable, a straightforward approach employs conditional frequencies. There is
then, for each value y ∈ Y, a specific model for the regression function

x −→ P(Y = y |X = x) (15)

Examples of such models will be considered in Section 2.4. If Y is a quantitative variable,
regression models often concern conditional mean values, that is, are models of the regression
function

x −→ M(Y |X = x) (16)

Some examples will be discussed in Section 2.5.

A further possibility is to start from a parametric model for Y , say g(y; θ), and to make θ a
function of x. For example, if Y records the school-children’s scores in a competence test, one
might use a normal density function, say φ(y;µ, σ), and a linear link function µ = α + xβ.
Obviously, the possibilities to specify regression models with this approach are nearly unlimited.

An important goal to be served by regression models becomes visible if X consists of several
components, say X = (X1, . . . ,Xq). Then the regression function to be described by a model is

(x1, . . . , xq) −→ P[Y |X1 = x1, . . . ,Xq = xq] (17)

and one might be interested in finding a simpler description of the dependence on the independent
variables. The simplest possibility would be to use a linear link function, say θ = β0 + x1β1 +
· · ·+ xqβq. Of course, this ignores all interaction effects that might be important.

I speak of descriptive regression models in order to stress that these models are intended to
describe (represent) regression functions which are defined for statistical variables in a target
population. This entails that it will most often be necessary to employ sampling weights when
estimating such models with data resulting from stratified sampling. I briefly consider this for
two kinds of regression models.

4P[Y |X = x] is a short-cut for the function y −→ P(Y = y |X = x).
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2.4 Regression Models for Proportions

These are models for the regression function (15). I use gy(x; θ) as a generic formulation for
representing P(Y = y |X = x). If the model to be estimated is defined with the maximum
likelihood method, its definition is based on minimizing the distance function

∑

x,y
P(Y = y,X = x)

(

log(P(Y = y |X = x))− log(gy(x; θ))
)

This is equivalent with maximizing the log-likelihood function

ℓ(θ) =
∑

x,y
P(Y = y,X = x) log(gy(x; θ)) (18)

The parameter value θ∗ that maximizes this function defines the model for the target population.
If this model is to be estimated with sample data, one should use a log-likelihood function where
P(Y = y,X = x) is substituted by a plausible (unbiased) estimate.

Illustration with a binary logit model

To illustrate, I assume a binary dependent variable (Y = 0 or 1), and use a logit model defined
by

g1(x;α, β) =
exp(α+ xβ)

1 + exp(α+ xβ)

and g0(x;α, β) = 1− g1(x;α, β). With data from a stratified random sample one should use the
log-likelihood function

ℓs(θ) =
∑

i=1,n
wi

(

yi log(g1(xi; θ)) + (1− yi) log(g0(xi; θ))
)

(19)

with sampling weights wi defined by (2). Notice that, except when estimating a saturated model,
the weights are required even if the selection probabilities employed in the sampling design
depend only on variables that are used as independent variables in the model. To illustrate, I
use a logit model for the regression function

(x, z) −→ P(Y = y |X = x,Z = z) (20)

based on the example introduced in Section 2.1. Sampling weights are not required when
estimating a saturated model

g1(x;α, βx, βz , βxz) =
exp(α+ xβx + z βz + x z βxz)

1 + exp(α+ xβx + z βz + x z βxz)

They should be used, however, as soon as the model is simplified by omitting an interaction
term. In this example, a simplified model would be

g1(x;α, βx, βz) =
exp(α+ xβx + z βz)

1 + exp(α+ xβx + z βz)

Estimating this model with the data in Table 1, one gets the following results:

population sample with weights sample without weights

α̂ 0.3850 0.3850 0.3734

β̂x 0.6136 0.6136 0.5917

β̂z 1.0801 1.0801 1.1383
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Obviously, sampling weights are required for plausible estimates of the model parameters defined
for the target population.

Sampling weights are required, in particular, when the selection probabilities depend on the
dependent variable of the model. In our example, this would be a model in which the probability
of attending one or the other school type (X) is made dependent on the parents’ educational
level (Z). The log-likelihood function (18) shows that model estimation would require a plausible
estimate of the joint distribution P(X = x,Z = z).

2.5 Least Squares Estimation

Another estimation method is least squares (LS) estimation. It is often used for the definition
and estimation of regression models for conditional mean values as depicted in (16). In order
to refer to a model for mean values M(Y |X = x), I use m(x; θ) as a generic formulation. The
model for the target population is then defined by a parameter value θ∗ that minimizes the LS
distance function

LS(θ) =
∑

x∈X(Ω)
P(X = x)

(

M(Y |X = x)−m(x; θ)
)2

(21)

This is equivalent (see Rohwer and Pötter 2001: 135f.) with minimizing the function

∑

ω∈Ω

(

Y (ω)−m(X(ω); θ)
)2

This immediately leads to the usual formulation of LS estimation with data from a simple
random sample, namely,

∑

i=1,n

(

yi −m(xi; θ)
)2

(22)

If the data result from stratified sampling, it is helpful to start from (21) because this formulation
shows what should be done in order to find plausible parameter estimates: P(X = x) and
M(Y |X = x) should be substituted by plausible (unbiased) estimates. In order to derive a
formula for weighted LS regression, one can start from rewriting (21) as

LS(θ) =
∑

x
P(X = x)

(

∑

y

yP(Y = y,X = x)

P(X = x)
−m(x; θ)

)2

Minimizing this function is equivalent with minimizing

∑

x
P(X = x)m(x; θ)2 − 2m(x; θ)

∑

y
yP(Y = y,X = x)

Substituting P(X = x) and P(Y = y,X = x) by plausible (unbiased) estimates can now be done
by using weights in the following way:

∑

i=1,n
wi m(xi; θ)

2 − 2wi m(xi; θ) yi

where the weights wi are defined by (2). Finally, minimizing this function is equivalent with
minimizing

∑

i=1,n
wi

(

yi −m(xi; θ)
)2

(23)

which is the standard formulation for LS estimation with sampling weights.

It is noteworthy that this formulation also covers the case where the selection probabilities
depend on the dependent variable of the model.
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3. Probabilistic Data Models

I now consider probabilistic data models. The following quotation from D.R. Cox and N. Wer-
muth (1996: 12) explains the basic ideas.

The basic assumptions of probabilistic analyses are as follows: 1. The data are ob-
served values of random variables, i.e. of variables having a probability distribution.
2. Reasonable working assumptions can be made about the nature of these distribu-
tions, usually that they are of a particular mathematical form involving, however,
unknown constants, called parameters. We call this representation a model, or more
fully a probability model, for the data. 3. Given the form of the model, we regard
the objective of the analysis to be the summarization of evidence about either the
unknown parameters in the model or, occasionally, about the values of further ran-
dom variables connected with the model, and, very importantly, the interpretation
of that evidence.

The most important assumption underlying this modeling approach is that the data in a given
sample can be considered as values of random variables. To make this explicit, I refer to
a population, Ω, for which a statistical variable X : Ω −→ X is defined, and to a sample
S = {ω1, . . . , ωn} from this population. The observed data are xi = X(ωi), for i = 1, . . . , n. The
basic assumption then is that one can think of these values as realizations of random variables

Ẋ1, . . . , Ẋn (24)

Such variables will be called data representing random variables. To indicate that these are
random variables, and therefore conceptually different from statistical variables, they are marked
by a dot.

Probabilistic modeling consists in making assumptions about the probability distributions of
these random variables. Unfortunately, it is unclear how to understand these random variables,
and different interpretations exist (two interpretations will be discussed briefly in Section 3.4).5

A further obscurity concerns the goal of the modeling. It is often said that the goal is to model
‘data-generating processes’. However, usage of this term easily obscures an important distinction
between two kinds of processes:

a) Processes that generate real-world facts. Referring to the example introduced in Section
2.1, one can think of the processes that generate for each school-child specific values of the
variables X (school type) and Y (outcome). Such processes will be called fact-generating

processes.6

b) Processes that generate data, that is, information about already existing facts. Such pro-
cesses can properly be called data-generating processes. They include, in particular, the
selection of units to be included in a (random) sample. Such processes obviously presuppose
that fact-generating processes have taken place.

Distributions of data representing random variables result from both kinds of processes. I
suppose that the theoretical interest concerns the fact-generating processes. One therefore has
to decide whether one needs to distinguish the data representing random variables from the
theoretical interesting variables intended to represent the fact-generating processes.

5I will not discuss so-called superpopulation models which start from random variables defined for the population
Ω (and not just for the given sample).
6In Rohwer (2010), they have been called ‘substantial processes’. Since the term ‘substantial’ is ambiguous, I
now prefer to speak of ‘fact-generating processes’.
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3.1 Simple Stochastic Estimators

For ease of notation, I conceive of the random variables Ẋi as having a discrete property space
so that one can refer to probability functions fi(x) = Pr(Ẋi = x). It is often supposed (not only
if the data result from simple random sampling) that the variables have identical distributions,
fi(x) = f(x) (being the distribution of a random variable Ẋ), and are stochastically independent
(briefly: i.i.d.). Now assume that one wants to estimate f(x). Descriptive estimation in the
understanding of Section 2.1 is no longer appropriate. Instead, one can use the data representing
random variables to define an estimator that is itself a random variable. One can start from
random variables

İ[Ẋi = x] =

{

1 if Ẋi = x
0 otherwise

(25)

and use these variables to define the estimator

U̇x =
1

n

∑

i=1,n
İ[Ẋi = x] (26)

The sampled values x1, . . . , xn can then be viewed as providing a specific value of this estimator,
to be interpreted as an estimate of f(x). That the estimator is a random variable opens the
opportunity to define ‘unbiased’ in a way that is not available with descriptive estimation:

E(U̇x) = f(x)

Notice that the expectation, E(.), is here not defined w.r.t. the probability distribution which
is associated with the sampling procedure used to generate the actual sample. Instead, it is
defined w.r.t. the distribution of the data representing random variables.

Moreover, one can think that the estimator has a variance that can be estimated and used to
assess the ‘precision’ of the estimate; in the current example,

V(U̇x) =
f(x) (1− f(x))

n

Stratified Samples

Now consider data from stratified sampling based on a stratification variableH that distinguishes
m subpopulations (I use the notation introduced in Section 2.1). One then needs to distinguish
the data representing variables Ẋi from a theoretically interesting random variable, say Ẋ∗.
Of course, this variable must be defined before its distribution, say f∗(x), can be estimated.
One possibility is as follows. One starts from the assumption that in each subsample, Sj, the
variables Ẋi are i.i.d. with f(j)(x). This allows one to define

f∗(x) =
∑

j=1,m

Nj

N
f(j)(x)

Using then

U̇x,j =
1

nj

∑

i∈Sj

İ[Ẋi = x]

as an estimator for f(j)(x), an appropriate estimator for f∗(x) is

U̇∗
x =

∑

i=1,n
wi İ[Ẋi = x] (27)

where wi are the sampling weights defined in (2). This is formally analogous to the function
(3); the main difference is that (27) allows one to think in terms of a stochastic estimator that
can be defined without reference to a sampling design for the given sample.
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3.2 Models for Distributions

I now briefly discuss models for distributions of data representing random variables. I begin again
with the supposition that the variables Ẋi are i.i.d. with f(x). The theoretically assumed model
is given by g(x; θ). Estimation with the maximum likelihood method proceeds by minimizing
the distance function

∑

x
f(x)

(

log(f(x))− log(g(x; θ))
)

This is equivalent with maximizing the log-likelihood function

∑

x
f(x) log(g(x; θ)) (28)

The model to be estimated is g(x; θ∗) where θ∗ is the value of θ that maximizes this function.

This approach can also be viewed as providing a stochastic estimator. Substituting f(x) by the
estimator (26), one gets

1

n

∑

i=1,n

∑

x
İ[Ẋi = x] log(g(x; θ)) (29)

This also shows how to estimate a model for a distribution f∗(x) supposed to exist if the data
result from stratified sampling (see Section 3.1). One substitutes f∗(x) by the estimator (27),
and then gets

∑

i=1,n

∑

x
wi İ[Ẋi = x] log(g(x; θ)) (30)

covering (29) as a special case. The corresponding estimator U̇(Ẋ1, . . . , Ẋn) is defined as follows:
If Ẋ1 = x1, . . . , Ẋn = xn and θ̂ maximizes

ℓ(θ) =
∑

i=1,n
wi log(g(xi; θ)) (31)

then U̇(Ẋ1, . . . , Ẋn) = θ̂. In this sense one can consider θ̂ as an estimate of θ∗ that results from
the sample x1, . . . , xn.

3.3 Probabilistic Regression Models

I now consider probabilistic regression models that are based on data representing random
variables

(Ẋ1, Ẏ1), . . . , (Ẋn, Ẏn) (32)

I first assume that these variables are i.i.d. with a probability function f(x, y) = P(Ẋ = x, Ẏ =
y). As an example, I consider a model for the regression function

x −→ E(Ẏ | Ẋ = x) (33)

Notice that, given x, E(Ẏ | Ẋ = x) is a fixed value, defined by assuming a distribution f(x, y).
The regression model is intended to model these conditional expectations. I use m(x; θ) as a
generic formulation. In addition, one must define the parameter, say θ∗, that one intends to
estimate. As was done in Section 2.5, I use the least squares method, that is, θ∗ is defined as
the parameter value that minimizes

∑

x
f(x)

(

E(Ẏ | Ẋ = x)−m(x; θ)
)2

(34)
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Starting from this definition, one gets an estimator of θ∗ by substituting f(x) and E(Ẏ |Ẋ =
x) =

∑

y yf(x, y)/f(x) by suitable estimators.

The same approach can be followed when the data representing variables (32) relate to a stratified
sample. It is assumed, then, that the model concerns a regression function

x −→ E(Ẏ ∗ | Ẋ∗ = x) (35)

where the theoretically interesting variable, (Ẋ∗, Ẏ ∗), is defined by

f∗(x, y) =
∑

j=1,m

Nj

N
f(j)(x, y) (36)

(based on assuming that, in each subsample Sj , the variables (Ẋi, Ẏi) are i.i.d. with f(j)(x, y)).
The model to be estimated is now defined by the parameter θ∗ that minimizes

∑

x
f∗(x)

(

E(Ẏ ∗ | Ẋ∗ = x)−m(x; θ)
)2

(37)

In order to find a suitable estimator, one can substitute f∗(x) by the estimator (27), and
E(Ẏ ∗ | Ẋ∗ = x) by the estimator

∑

y

y
∑

iwiİ[Ẋi = x, Ẏi = y]
∑

i wiİ[Ẋi = x]
(38)

The resulting formula looks complicated, namely,

∑

x

∑

i
wi İ[Ẋi = x]

(

∑

y

y
∑

iwiİ [Ẋi = x, Ẏi = y]
∑

iwiİ[Ẋi = x]
−m(x; θ)

)2
(39)

However, the corresponding estimator for θ∗, say U̇(Ẋ1, Ẏ1, . . . , Ẋn, Ẏn), is quite simple: If the
sample is (x1, y1), . . . , (xn, yn), the estimator provides the value U̇(Ẋ1, Ẏ1, . . . , Ẋn, Ẏn) = θ̂ that
minimizes the function

∑

i=1,n
wi

(

yi −m(xi; θ)
)2

(40)

(see the formally analogous derivation in Section 2.5).

When one should use sampling weights?

Notice that (40) requires weights even if the selection probabilities used in the stratified sampling
depend only on variables included as independent variables in the regression model (the only
exception occurs when there is a separate model for each subsample (stratum)). This is a
consequence of understanding the conditional expectations, E(Ẏ |Ẋ = x), as quantities that are
fixed independently of the modeling exercise. This entails that the regression model, m(x; θ∗),
must be understood as approximately representing these quantities.

There is, however, another understanding of probabilistic regression models that starts from the
idea that one can use a model to make assumptions about the probability distribution of the
data representing variables (see above the quotation from Cox and Wermuth). An often made
assumption is that there is a parameter value θ∗ such that

E(Ẏ | Ẋ = x) = m(x; θ∗) (41)

This assumption allows one to argue that sampling weights are not required if they depend only
on variables included as independent variables in the model. This can be seen in the following
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way. If sampling weights depend only on values of Ẋ, the weights wi in the estimator (38) cancel
because they do no vary. If furthermore (41) holds, also the probability function f∗(x) in (37)
can be dropped. Consequently, the function (39) which is used to define the estimator can be
simplified into

∑

x

(

∑

y

y
∑

i İ[Ẋi = x, Ẏi = y]
∑

i İ[Ẋi = x]
−m(x; θ)

)2

Finding then the minimum for a sample (x1, y1), . . . , (xn, yn) is equivalent with minimizing the
unweighted least squares function

∑

i=1,n

(

yi −m(xi; θ)
)2

(42)

If (41) holds, m(x; θ∗) could be called a ‘true regression model’.7 This notion also motivates a
specific understanding of ‘omitted variables’: variables that should be added to the model in
order to make it a true regression model.

3.4 How to Understand the Approach?

The modeling approach based on data representing random variables is quite flexible. As soon as
one has introduced these variables one can make arbitrary assumptions about their distributions
and then use the methods of formal probability theory to derive implications. Unfortunately, it
is unclear how to understand these random variables.

The main obscurity is due to the fact that these variables are defined by reference to a given
sample, say S = {ω1, . . . , ωn}. Otherwise it would not be possible to distinguish data repre-
senting random variables by indices, i, that refer to individual units. However, assume that the
index i refers to a particular unit, ωi, how then to make sense of realizations of the random
variable Ẋi ? Except for measurement errors, this variable can only have a single value, the one
that was recorded in the given sample.

In order to avoid these obscurities, one can try to define data representing random variables by
a sampling procedure. Given the notion of a statistical variable X : Ω −→ X , one can define a
random variable Ẋ in the following way: randomly draw with replacement a unit ω, and then
take X(ω) as a realization of Ẋ . This is a conceptually valid definition, and it entails a definite
probability distribution for Ẋ: Pr(Ẋ = x) = P(X = x).

Of course, this is not normally the method that is used to create S. If it is a simple random
sample, one might, nevertheless, use Ẋ as an approximately valid representation of the data
generating process that has produced the sampled values.8 However, these values must then be
conceived of as realizations of one single random variable, Ẋ , and indices referring to particular
units cannot be used.

In a similar way one could define data representing random variables by referring to a stratified
sampling procedure. For each subpopulation one can define a separate random variable, say
Ẋ(j). Assuming then known fractions Nj/N , their distributions could be mixed to define a

random variable Ẋ representing the target population. Again, there would be no possibility to
introduce random variables indexed by references to particular units.

As a consequence of following this approach to introduce data representing random variables,
models must be understood as descriptions of probability distributions that are fixed before the

7The belief that one has specified a true regression model is often thought to be a prerequisite even for linear
OLS regression; see e.g. Winship and Radbill (1994: 232).
8This assumption is often made, see e.g. DuMouchel and Duncan (1983: 536).
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modeling takes place (and actually are derived from statistical distributions in a target popula-
tion). This entails that assumption (41) is most often not reasonable. A different understanding
of the data representing random variables is required in order to allow one to make arbitrary
assumptions about their distributions and, in particular, to think in terms of a ‘true regression
model’. The random variables must then be understood as theoretical fictions invented to make
a special form of probabilistic modeling possible (see, e.g., Berk 2004: 53ff.).

4. Probabilistic Functional Models

I now consider functional models that serve to formulate rules for generic units (or situations).
Such models can be conceptualized either as deterministic or as probabilistic models (see Rohwer
2010, 2011). Here I only consider probabilistic functional models (subsequently I drop the
adjective and simply speak of functional models).

4.1 Modeling Probabilistic Rules

As an example of a probabilistic rule consider the following: The probability that a child suc-
cessfully completes a grade is higher in schools of type 1 than in schools of type 0. This is not
a statement about any particular school-child, or any particular population of school-children.
It is not a descriptive statement at all. Instead, it is a rule which refers to a generic school-
child. How to formulate such rules? As a first step, one can think that the rule formulates a
dependency relation between two variables; graphically depicted:

Ẍ −→→ Ẏ (43)

The variable Ẍ serves to make an assumption about the school type (0 or 1), and Ẏ serves to
refer to possible outcomes (1 if success, 0 if no success). Ẍ is an exogenous, Ẏ is an endogenous
variable of the model. Since values of Ẍ can be arbitrarily fixed, Ẍ can be conceived of neither
as a statistical nor as a random variable. To remind of its special status as an exogenous variable
without an associated distribution it is marked by two dots. Since Ẍ has no distribution, there
also is no distribution for Ẏ (and it is therefore not a random variable in the usual sense of the
word). However, in order to make quantitative statements possible, one can think of conditional
distributions of Ẏ if particular values of Ẍ are fixed. To make this idea explicit, one uses a
stochastic function

x −→ Pr[Ẏ | Ẍ = x] (44)

that assigns to each value x of Ẍ a conditional probability distribution of the variable Ẏ .

In my understanding, these are epistemic probability distributions quantifying the uncertainty
of using the rule for a prediction. The probabilities are not fixed by real-world facts but reflect
the beliefs and the knowledge of people who are interested in the predictions. Possibilities to
find values of these probabilities therefore depend on the application context. If one can refer
to an artificial random generator, or an analogously conceivable process frame (a ‘random ex-
periment’), classical inference methods which presuppose objective probabilities can be used.
In most social science applications process frames can be conceived of as random generators in
only a very loose sense, and quantification of epistemic probabilities must be based on samples
from historically changing populations. Of course, there is no other possibility than to rely on
observed conditional frequencies. However, in contrast to distributions of statistical variables
defined for specified target populations, the epistemic probabilities to be estimated cannot be
assumed to be objectively fixed quantities, but must be understood as being defined by suit-
able estimation methods. (Notice that I here and subsequently speak of ‘estimation’ without
presupposing defined quantities that could be estimated in a proper sense.)
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4.2 Functional Models without Parameters

All models discussed in the present section refer to the example introduced in Section 2.1 (Table
1). The focus is on how to estimate the models with data which result from stratified sampling
and, in particular, whether one should use sampling weights.

Selection depends only on exogenous variables

A first situation occurs when the selection probabilities which are used in the sampling procedure
depend only on exogenous variables of the model. As an example, one can think of a dependency
relation Ẍ −→→ Ẏ where Ẍ (corresponding to X) specifies the school type, and Ẏ (corresponding
to Y ) represents the outcome. Since both variables are binary, it suffices to consider stochastic
function

x −→ Pr(Ẏ = 1 | Ẍ = x) (45)

as a quantitative functional model. The conditional probabilities can be estimated by corre-
sponding frequencies:

Pr(Ẏ = 1 | Ẍ = 0) estimated by P(Y s = 1 |Xs = 0) = 0.657

Pr(Ẏ = 1 | Ẍ = 1) estimated by P(Y s = 1 |Xs = 1) = 0.847

Since the selection probabilities depend only on X, there is no need to employ sampling weights.

Selection depends on endogenous variables

A different situation occurs when the selection probabilities depend on an endogenous variable
of a functional model. To illustrate with the example, one might be interested in the stochastic
function

z −→ Pr(Ẋ = 1 | Z̈ = z) (46)

which assumes that the probability of attending a school of a particular type depends on the
educational level of the child’s parents. Since the selection probabilities used for the stratified
sampling depend on the variable X, P(Xs = 1 |Zs = z) is certainly not a good estimate of
Pr(Ẋ = 1 | Z̈ = z), and one should use instead a plausible estimate of P(X = 1 |Z = z). For
example, as an estimate of Pr(Ẋ = 1 | Z̈ = 0) one can use the estimate

0.001P(Xs = 1, Zs = 0)

0.002P(Xs = 0, Zs = 0) + 0.001P(Xs = 1, Zs = 0)
= 0.138

This is the estimate that one would use in descriptive estimation. In the present context, the ar-
gument for using this estimate is, however, different. In the descriptive approach one is interested
in estimating the quantity P(X = 1 |Z = 0) that is defined for a particular target population.
Instead, when estimating a functional model, one uses observed conditional frequencies for the
quantification of epistemic probabilities. The argument for using sampling weights is then based
on the intention to avoid distortions produced by a data generating process.

Selection depends on not included variables

Still another situation occurs when the selection probabilities depend on variables that are not
included in the model. As an example I consider the stochastic function

z −→ Pr(Ẏ = 1 | Z̈ = z) (47)
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which assumes that the probability of a child’s success in completing a grade depends on the
parents’ educational level. Should one use sampling weights when estimating these conditional
probabilities?

Since the goal is not to make descriptive statements about a target population, there is no
immediate answer. The first question should therefore be why there might be relevant differences
between weighted and unweighted estimates. Differences occur if the conditional probability
distribution of Ẏ , in addition to being dependent on the model’s exogenous variables, also
depends on the variable used for the stratified sampling. In the example, this is the variable
X. The easiest solution therefore is: If weighted and unweighted estimates differ (significantly),
include the variable used for stratification as an additional exogenous variable in the model. In
our example, the enlarged model would be

(x, z) −→ Pr(Ẏ = 1 | Ẍ = x, Z̈ = z) (48)

Estimation of this model does not require to use sampling weights.

Reference to this enlarged model also provides a hint why the question of whether to use sampling
weights when estimating (47) has no clear answer. The model (47) cannot be derived from the
enlarged model. To do this would require a distribution for the variable Ẍ which does not exist.
In order to perform the derivation one would need to substitute Ẍ by a statistical variable X
(or a random variable Ẋ). Using a statistical variable X, one could write:

Pr(Ẏ = 1 | Z̈ = z) =
∑

x
Pr(Ẏ = 1 | Z̈ = z,X = x) P(X = x | Z̈ = z)

showing how Pr(Ẏ = 1 | Z̈ = z) depends on a statistical distribution. The question which
distribution should be used has no clear answer, however, because the model (47) does not refer
to any particular population.

Of course, one can think of functional models intended to make predictions for units in a par-
ticular population. This could provide an argument for using conditional frequencies which are
plausible (unbiased) estimates for the particular population. However, in social science appli-
cations where populations continuously change, one is seldom interested in functional models
restricted to a particular point in time.

Adding structural relationships

The ‘weighting problem’ has no unique solution as long as both, Ẍ (on which selection probabil-
ities depend) and Z̈, are viewed as exogenous variables of the model. One should therefore think
about possible relationships between the exogenous variables. There are three possibilities.

(a) Z̈ depends on Ẍ . This entails a new functional model in which the formerly exogenous
variable Z̈ has become an endogenous variable, Ż. Graphically depicted:

(49)
Ẏ

Ż

ẌPPPPPq

�����1

PPPPPq

�����1??

When estimating this model one would not need sampling weights.

(b) A second possibility is that Ẍ depends on Z̈. Again, this entails a new functional model in
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which the formerly exogenous variable Ẍ has become an endogenous variable, Ẋ. Graphically
depicted:

(50)
Ẏ

Z̈

ẊPPPPPq

�����1

PPPPPq

�����1
66

Estimating this model would require to use sampling weights because the selection probabilities
of the sampled data now depend on an endogenous variable of the model.

(c) A third possibility is to substitute both, Ẍ and Z̈, by endogenous variables, Ẋ and Ż, which
are assumed to depend on an exogenous variable, say Ü . Graphically depicted:

(51)
Ẏ

Ż

ẊXXXXXz
XXXXXz

����:
����:Ü

����:����:
XXXXz
XXXXz

If Ü is a meaningful variable and observations are included in the sample, one should use
weights to estimate the model (since selection probabilities depend on an endogenous variable of
the model). No solution of the weighting problem will be gained, however, if Ü is an unobserved
variable. Only arbitrary assumptions about the common distribution of Ẋ and Ż would then
be possible.

4.3 Parametric Functional Models

The basic functional model concerns a dependency relation Ẍ −→→ Ẏ and uses a stochastic
function x −→ Pr[Ẏ |Ẍ = x] as a framework for quantitative statements. If no specific parametric
model is assumed, one directly refers to the conditional probabilities Pr(Ẏ = y | Ẍ = x). Instead,
one can set up a parametric model, say

x −→ g(x; θ) (52)

In my understanding, this model uses g(x; θ) for giving Pr[Ẏ |Ẍ = x], the epistemic probability
distributions, a specific mathematical form; in a sense, g(x; θ) then defines how to conceive of
Pr[Ẏ |Ẍ = x]. This understanding entails that g(x; θ) is not intended to describe a conditional
probability distribution that can be assumed to exist independently of the model. (Consequently,
there is no question whether the model might be ‘true’ or not.)

This view is in accord with the understanding that functional models serve to formulate rules
and do not intend to describe distributions in a target population. It follows that the principles
of descriptive estimation are not applicable to the estimation of parametric functional models.
In particular, there is no place for the argument that one should use sampling weights in order
to get unbiased estimates of parameters that are defined by reference to a target population.

There is therefore a difference to the estimation of probabilistic data models. As has been
argued in Section 3.3, when estimating these models one should use sampling weights even if
the weights only depend on independent variables of the regression model. This is not required
when estimating parametric functional models. Apart from this, all considerations of sampling
weights discussed in the previous subsection can also be applied to the estimation of parametric
functional models.
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